Câu hỏi:

13/07/2024 3,181

Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của tia CD lấy điểm F sao cho CE = CF.

a) Chứng minh DE = BF.

b) Tia DE cắt BF tại H. Chứng minh \(\widehat {DHF}\) = 90°

c) Gọi I là trung điểm của EF, K là giao điểm của FE và BD. Chứng minh tứ giác AOIK là hình bình hành.

d) Chứng minh A, H, K thẳng hàng.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của (ảnh 1)

a) Vì ABCD là hình vuông nên AB = BC = CD = DA và

\(\widehat {ABC} = \widehat {BC{\rm{D}}} = \widehat {C{\rm{D}}A} = \widehat {DAB} = 90^\circ \)

Xét DEC và BFC có

EC = FC (giả thiết)

\(\widehat {DCE} = \widehat {BCF} = 90^\circ \)

DC = BC (chứng minh trên)

Do đó DEC = BFC (c.g.c)

Suy ra DE = BF (2 cạnh tương ứng), \(\widehat {E{\rm{D}}C} = \widehat {FBC}\)

b) Xét BEH và DEC có

\(\widehat {BEH} = \widehat {DEC}\) (hai góc đối đỉnh)

\(\widehat {E{\rm{D}}C} = \widehat {FBC}\) (chứng minh câu a)

Suy ra  (g.g)

Do đó \(\widehat {BHE} = \overrightarrow {DCE} \)

\(\overrightarrow {DCE} = 90^\circ \) nên \(\widehat {BHE} = 90^\circ \)

Hay DE BF

Suy ra \(\widehat {DHF} = 90^\circ \)

c) Xét tam giác BDF có

DE  BF

BC  DF

DE cắt BC tại E

Suy ra E là trực tâm tam giác BDF

Do đó FK BD

Mà AO BD

Suy ra AO // IK

Vì CE = CF nên tam giác CEF cân tại C

Mà CI là trung tuyến

Suy ra CI là đường cao

Hay CI EF

Xét tứ giác OKIC có

\(\widehat {OKI} = \widehat {K{\rm{O}}C} = \widehat {CIK} = 90^\circ \)

Suy ra OKIC là hình chữ nhật

Do đó OC = KI

Mà OC = AO

Suy ra AO = KI

Xét tứ giác AOIK có AO // KI , AO = KI (chứng minh trên)

Suy ra AOIK là hình bình hành

d) Xét tứ giác ABHD có \(\widehat {BA{\rm{D}}} + \widehat {BHD} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác ABHD nội tiếp

Do đó \(\widehat {AHB} = \widehat {A{\rm{D}}B} = 45^\circ \)

Xét tứ giác DKHF có \(\widehat {{\rm{DKF}}} = \widehat {DHF} = 90^\circ \)

Suy ra tứ giác DKHF nội tiếp

Do đó \(\widehat {KHB} = \widehat {{\rm{FD}}B} = 45^\circ \)

Suy ra \(\widehat {AHB} = \overrightarrow {KHB} \)

Suy ra AH ≡ KH

Do đó A, H, K thẳng hàng

Vậy A, H, K thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):

a) y = f(x) = \(\frac{{3x + 1}}{{{x^2} + 2(m - 1)x + {m^2} + 3m + 5}}\)

b) y = f(x) = \(\sqrt {{x^2} + 2\left( {m - 1} \right)x + {m^2} + m - 6} \)

c) y = f(x) = \(\frac{{3x + 5}}{{{x^2} - 2(m + 3)x + m + 9}}\)

Xem đáp án » 13/07/2024 19,593

Câu 2:

Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng:

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)

Xem đáp án » 13/07/2024 15,826

Câu 3:

Cho tam giác ABC có AB = 2, BC = 4, CA = 3.

a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \), rồi suy ra cosA

b) Gọi G là trọng tâm của ABC. Tính \(\overrightarrow {AG} .\overrightarrow {BC} \)

c) Tính giá trị biểu thức S = \(\overrightarrow {GA} .\overrightarrow {GB} + \overrightarrow {GB} .\overrightarrow {GC} + \overrightarrow {GC} .\overrightarrow {GA} \)

d) Gọi AD là phân giác trong của góc BAC (D BC). Tính \(\overrightarrow {A{\rm{D}}} \) theo \(\overrightarrow {AB} ;\overrightarrow {AC} \)suy ra AD.

Xem đáp án » 13/07/2024 7,854

Câu 4:

Một thiết bị gồm có 3 bộ phận. Trong khoảng thời gian T, việc các bộ phận đó bị hỏng là độc lập với nhau và với các xác suất tương ứng là: 0,1; 0,2; 0,3. Cả thiết bị sẽ bị hỏng nếu có ít nhất một bộ phận hư hỏng. Tìm xác suất thiết bị hoạt động tốt trong thời gian T đó.

Xem đáp án » 13/07/2024 5,890

Câu 5:

Tỉ lệ phế phẩm của một nhà máy là 5%. Tìm xác xuất để trong 12 sản phẩm do nhà máy đó sản xuất ra có

a) 2 phế phẩm

b) không quá 2 phế phẩm.

Xem đáp án » 13/07/2024 4,772

Câu 6:

Cho tứ giác ABCD có AB = AD; CB = CD (ta gọi tứ ABCD trong trường hợp này là tứ giác có hình ảnh cánh diều)

a) Chứng minh AC là đường trung trực của BD

b) Tính góc B và góc D (biết \(\widehat A = 100^\circ ,\widehat C = 60^\circ \)).

Xem đáp án » 13/07/2024 3,549

Câu 7:

Tìm tập xác định của hàm số sau:

a) y = 3x2 2x + 1

b) y = \(\frac{{3\left| x \right| + 2}}{{x - 2}}\)

c) y = \(\sqrt {x - 2} + \sqrt {3 - x} \)

d) y = \(\frac{{\frac{{2{\rm{x}} - 1}}{{\sqrt {4 - 3{\rm{x}}} }}}}{x}\)

e) y = \(\frac{{\sqrt {x + 3} }}{{2 - x}}\)

f) y = \(\frac{{2{\rm{x}} + 1}}{{{x^2} - 3{\rm{x}} + 2}}\)

g) y = \(\frac{{x - 1}}{{{x^2} - 1}} - 3x\)

Xem đáp án » 13/07/2024 3,279

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store