Câu hỏi:
13/07/2024 6,110
Tìm tập xác định của hàm số sau:
a) y = 3x2 – 2x + 1
b) y = \(\frac{{3\left| x \right| + 2}}{{x - 2}}\)
c) y = \(\sqrt {x - 2} + \sqrt {3 - x} \)
d) y = \(\frac{{\frac{{2{\rm{x}} - 1}}{{\sqrt {4 - 3{\rm{x}}} }}}}{x}\)
e) y = \(\frac{{\sqrt {x + 3} }}{{2 - x}}\)
f) y = \(\frac{{2{\rm{x}} + 1}}{{{x^2} - 3{\rm{x}} + 2}}\)
g) y = \(\frac{{x - 1}}{{{x^2} - 1}} - 3x\)
Tìm tập xác định của hàm số sau:
a) y = 3x2 – 2x + 1
b) y = \(\frac{{3\left| x \right| + 2}}{{x - 2}}\)
c) y = \(\sqrt {x - 2} + \sqrt {3 - x} \)
d) y = \(\frac{{\frac{{2{\rm{x}} - 1}}{{\sqrt {4 - 3{\rm{x}}} }}}}{x}\)
e) y = \(\frac{{\sqrt {x + 3} }}{{2 - x}}\)
f) y = \(\frac{{2{\rm{x}} + 1}}{{{x^2} - 3{\rm{x}} + 2}}\)
g) y = \(\frac{{x - 1}}{{{x^2} - 1}} - 3x\)
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) y = 3x2 – 2x + 1
Hàm số xác định với mọi x ∈ R
Vậy tập xác định D = R.
b) y = \(\frac{{3\left| x \right| + 2}}{{x - 2}}\)
Hàm số xác định khi x – 2 ≠ 0
Hay x ≠ 2
Vậy tập xác định D = R \ {2}.
c) y = \(\sqrt {x - 2} + \sqrt {3 - x} \)
Hàm số xác định khi \(\left\{ \begin{array}{l}x - 2 \ge 0\\3 - x \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\x \le 3\end{array} \right. \Leftrightarrow 2 \le {\rm{x}} \le 3\)
Vậy tập xác định D = [2; 3].
d) y = \(\frac{{\frac{{2{\rm{x}} - 1}}{{\sqrt {4 - 3{\rm{x}}} }}}}{x}\)
Hàm số xác định khi \(\left\{ \begin{array}{l}4 - 3x > 0\\x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < \frac{4}{3}\\x \ne 0\end{array} \right.\)
Vậy tập xác định D = (– ∞; \(\frac{4}{3}\)) \ {0}.
e) y = \(\frac{{\sqrt {x + 3} }}{{2 - x}}\)
Hàm số xác định khi \(\left\{ \begin{array}{l}x + 3 > 0\\2 - x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 3\\x \ne 2\end{array} \right.\)
Vậy tập xác định D = (– 3; + ∞) \ {2}.
f) y = \(\frac{{2{\rm{x}} + 1}}{{{x^2} - 3{\rm{x}} + 2}}\)
Hàm số xác định khi x2 – 3x + 2 ≠ 0
⇔ (x – 1)(x – 2) ≠ 0
⇔ \(\left\{ \begin{array}{l}x \ne 1\\x \ne 2\end{array} \right.\)
Vậy tập xác định D = R \ {1; 2}.
g) y = \(\frac{{x - 1}}{{{x^2} - 1}} - 3x\)
Hàm số xác định khi x2 – 1 ≠ 0
⇔ \(\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right.\)
Vậy tập xác định D = R \ {1; –1}.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số f(x) luôn xác định trên R

Vậy m > \(\frac{{ - 4}}{5}\).
b) Hàm số f(x) luôn xác định trên R

Vậy m ≥ \(\frac{7}{3}\).
c) ) Hàm số f(x) luôn xác định trên R

Vậy – 5 < m < 0.
Lời giải
Ta có :
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)
\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)
\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.