Câu hỏi:
13/07/2024 583Cho hình vuông ABCD, gọi O là tâm của hình vuông. Một đường thẳng qua O cắt AD tại P, cắt BC tại Q.
a) Chứng minh AP = CQ
b) Kẻ Px vuông góc AC tại E (E thuộc AC). Kẻ Qy vuông góc BD tại F (F thuộc BD), Px và Qy cắt nhau tại M. Chứng minh OEMF là hình chữ nhật.
c) Chứng minh M thuộc cạnh AB
d) Lấy K thuộc BC sao cho CK = DP. Chứng minh \(\widehat {MOK} = 90^\circ \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì ABCD là hình vuông tâm O
Nên OA = OB = OC = OD, AB = BC = CD = DA, AD // BC
Suy ra \(\widehat {DAC} = \widehat {ACB}\) (hai góc so le trong)
Xét tam giác AOP và tam gíc COQ có
\(\widehat {DAC} = \widehat {ACB}\) (chứng minh trên)
OA = OC (chứng minh trên)
\(\widehat {AOP} = \widehat {COQ}\) (hai góc đối đỉnh)
Do đó ΔAOP = ΔCOQ (g.c.g)
Suy ra AP = CQ (hai cạnh tương ứng)
b) Vì AB = AD nên tam giác ABD cân tại A
Mà AO là đường trung tuyến
Suy ra AO là đường cao
Hay AO ⊥ BD
Xét tứ giác OEMF có
\(\widehat {OEM} = \widehat {EOF} = \widehat {OFM} = 90^\circ \)
Suy ra OEMF là hình chữ nhật
c) Vì OEMF là hình chữ nhật
Nên \[\widehat {FME} = 90^\circ \]
Hay tam giác PMQ vuông tại M
Mà MO là trung tuyến
Suy ra OM = OP = OQ
Do đó tam giác POM cân tại O
Lại có OE là đường cao nên OE là phân giác của \(\widehat {POM}\)
Suy ra \(\widehat {POE} = \widehat {EOM}\)
Xét tam giác AOP và tam giác AOM có
AO là cạnh chung
\(\widehat {POE} = \widehat {EOM}\) (chứng minh trên)
OM = OP (chứng minh trên)
Suy ra △AOP = △AOM (c.g.c)
Do đó \(\widehat {AP{\rm{O}}} = \widehat {AM{\rm{O}}}\) (hai góc tương ứng)
Ta có OM = OQ
Do đó tam giác QOM cân tại O
Lại có OF là đường cao nên OF là phân giác của \(\widehat {QOM}\)
Suy ra \(\widehat {QOF} = \widehat {FOM}\)
Xét tam giác BOQ và tam giác BOM có
BO là cạnh chung
\(\widehat {QOF} = \widehat {FOM}\) (chứng minh trên)
OM = OQ (chứng minh trên)
Suy ra △ BOQ = △BOM (c.g.c)
Do đó \(\widehat {{\rm{BQO}}} = \widehat {BM{\rm{O}}}\) (hai góc tương ứng)
Vì AD // BC nên \(\widehat {AP{\rm{O}}} + \widehat {BQO} = 180^\circ \)
Mà \(\widehat {{\rm{BQO}}} = \widehat {BM{\rm{O}}}\), \(\widehat {AP{\rm{O}}} = \widehat {AM{\rm{O}}}\)
Suy ra \(\widehat {AM{\rm{O}}} + \widehat {BMO} = 180^\circ \)
Hay \(\widehat {AMB} = 180^\circ \)
Do đó A, M, B thẳng hàng
Vậy M thuộc cạnh AB
d) Ta có: AP = AD – DP, BK = BC – CK
Mà AD = BC, PD = CK
Suy ra AP = BK
Vì ABCD là hình vuông tâm O
Nên \(\widehat {DAO} = \widehat {OBC} = 45^\circ \)
Xét tam giác POA và tam giác KOB có
OA = OB
\(\widehat {DAO} = \widehat {OBC}\) (chứng minh trên)
PA = BK (chứng minh trên)
Suy ra △POA = △KOB (c.g.c)
Do đó \(\widehat {POA} = \widehat {K{\rm{OB}}}\) (hai góc tương ứng)
Mà \(\widehat {POA} = \widehat {{\rm{AOM}}}\)
Nên \(\widehat {KOB} = \widehat {{\rm{AOM}}}\)
Mặt khác \(\widehat {AOM} + \widehat {{\rm{MOB}}} = \widehat {AOB} = 90^\circ \) (hai góc kề bù)
Suy ra \(\widehat {BOK} + \widehat {{\rm{MOB}}} = 90^\circ \)
Hay \(\widehat {MOK} = 90^\circ \)
Vậy \(\widehat {MOK} = 90^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a) y = f(x) = \(\frac{{3x + 1}}{{{x^2} + 2(m - 1)x + {m^2} + 3m + 5}}\)
b) y = f(x) = \(\sqrt {{x^2} + 2\left( {m - 1} \right)x + {m^2} + m - 6} \)
c) y = f(x) = \(\frac{{3x + 5}}{{{x^2} - 2(m + 3)x + m + 9}}\)
Câu 2:
Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng:
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Câu 3:
Cho tam giác ABC có AB = 2, BC = 4, CA = 3.
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \), rồi suy ra cosA
b) Gọi G là trọng tâm của △ABC. Tính \(\overrightarrow {AG} .\overrightarrow {BC} \)
c) Tính giá trị biểu thức S = \(\overrightarrow {GA} .\overrightarrow {GB} + \overrightarrow {GB} .\overrightarrow {GC} + \overrightarrow {GC} .\overrightarrow {GA} \)
d) Gọi AD là phân giác trong của góc BAC (D ∈ BC). Tính \(\overrightarrow {A{\rm{D}}} \) theo \(\overrightarrow {AB} ;\overrightarrow {AC} \)suy ra AD.
Câu 4:
Một thiết bị gồm có 3 bộ phận. Trong khoảng thời gian T, việc các bộ phận đó bị hỏng là độc lập với nhau và với các xác suất tương ứng là: 0,1; 0,2; 0,3. Cả thiết bị sẽ bị hỏng nếu có ít nhất một bộ phận hư hỏng. Tìm xác suất thiết bị hoạt động tốt trong thời gian T đó.
Câu 5:
Tỉ lệ phế phẩm của một nhà máy là 5%. Tìm xác xuất để trong 12 sản phẩm do nhà máy đó sản xuất ra có
a) 2 phế phẩm
b) không quá 2 phế phẩm.
Câu 6:
Cho tứ giác ABCD có AB = AD; CB = CD (ta gọi tứ ABCD trong trường hợp này là tứ giác có hình ảnh cánh diều)
a) Chứng minh AC là đường trung trực của BD
b) Tính góc B và góc D (biết \(\widehat A = 100^\circ ,\widehat C = 60^\circ \)).
Câu 7:
Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)2 , ∀ x ∈ R. Số điểm cực tiểu của hàm số đã cho là
về câu hỏi!