Câu hỏi:
13/07/2024 1,189
Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm B và C, biết AB = BC = \(2\sqrt 5 \) cm, CD = 6 cm. Tìm bán kính đường tròn.
Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm B và C, biết AB = BC = \(2\sqrt 5 \) cm, CD = 6 cm. Tìm bán kính đường tròn.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Từ O kẻ OH vuông góc với CD. Nối O với B, OB cắt AC tại K
Suy ra OB ⊥ AC
Vì tam giác ACD nội tiếp (O) đường kính AD
Nên \(\widehat {ACD} = 90^\circ \)
Xét tứ giác OHCK có \(\widehat {OKC} = \widehat {KCH} = \widehat {OHC} = 90^\circ \)
Suy ra OHCK là hình chữ nhật
Do đó OK = CH = \(\frac{1}{2}\)CD = 3, OH = CK = \(\sqrt {O{C^2} - O{K^2}} = \sqrt {{R^2} - 9} \) (1)
Xét tam giác BCK vuông ở K có
CK = \(\sqrt {B{C^2} - B{K^2}} = \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - {{\left( {R - 3} \right)}^2}} \) (2)
Từ (1) và (2) ta có
\(\sqrt {{R^2} - 9} = \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - {{\left( {R - 3} \right)}^2}} \)
\( \Leftrightarrow \sqrt {{R^2} - 9} = \sqrt {20 - {R^2} + 6{\rm{R}} - 9} \)
\( \Leftrightarrow \sqrt {{R^2} - 9} = \sqrt {11 - {R^2} + 6{\rm{R}}} \)
⟺ \({R^2} - 9 = 11 - {R^2} + 6{\rm{R}}\)
⟺ 2R2 – 6R – 20 = 0
⟺ \(\left[ \begin{array}{l}R = 5\\R = - 2\end{array} \right.\)
Vậy bán kính đường tròn là 5 cm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số f(x) luôn xác định trên R

Vậy m > \(\frac{{ - 4}}{5}\).
b) Hàm số f(x) luôn xác định trên R

Vậy m ≥ \(\frac{7}{3}\).
c) ) Hàm số f(x) luôn xác định trên R

Vậy – 5 < m < 0.
Lời giải
Ta có :
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)
\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)
\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.