Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm B và C, biết AB = BC = \(2\sqrt 5 \) cm, CD = 6 cm. Tìm bán kính đường tròn.
Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm B và C, biết AB = BC = \(2\sqrt 5 \) cm, CD = 6 cm. Tìm bán kính đường tròn.
Quảng cáo
Trả lời:


Từ O kẻ OH vuông góc với CD. Nối O với B, OB cắt AC tại K
Suy ra OB ⊥ AC
Vì tam giác ACD nội tiếp (O) đường kính AD
Nên \(\widehat {ACD} = 90^\circ \)
Xét tứ giác OHCK có \(\widehat {OKC} = \widehat {KCH} = \widehat {OHC} = 90^\circ \)
Suy ra OHCK là hình chữ nhật
Do đó OK = CH = \(\frac{1}{2}\)CD = 3, OH = CK = \(\sqrt {O{C^2} - O{K^2}} = \sqrt {{R^2} - 9} \) (1)
Xét tam giác BCK vuông ở K có
CK = \(\sqrt {B{C^2} - B{K^2}} = \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - {{\left( {R - 3} \right)}^2}} \) (2)
Từ (1) và (2) ta có
\(\sqrt {{R^2} - 9} = \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - {{\left( {R - 3} \right)}^2}} \)
\( \Leftrightarrow \sqrt {{R^2} - 9} = \sqrt {20 - {R^2} + 6{\rm{R}} - 9} \)
\( \Leftrightarrow \sqrt {{R^2} - 9} = \sqrt {11 - {R^2} + 6{\rm{R}}} \)
⟺ \({R^2} - 9 = 11 - {R^2} + 6{\rm{R}}\)
⟺ 2R2 – 6R – 20 = 0
⟺ \(\left[ \begin{array}{l}R = 5\\R = - 2\end{array} \right.\)
Vậy bán kính đường tròn là 5 cm.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số f(x) luôn xác định trên R

Vậy m > \(\frac{{ - 4}}{5}\).
b) Hàm số f(x) luôn xác định trên R

Vậy m ≥ \(\frac{7}{3}\).
c) ) Hàm số f(x) luôn xác định trên R

Vậy – 5 < m < 0.
Lời giải
Ta có :
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)
\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)
\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.