Câu hỏi:
25/04/2023 1,429Cho tam giác ABC bất kì, gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. H, H' lần lượt là trực tâm của tam giá ABC, MNP. Điểm K đối xứng H qua H'. Khẳng định nào sau đây đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là B
Xét tam giác ABC có M là trung điểm AB, N là trung điểm BC
Suy ra MN là đường trung bình
Do đó MN // AC, MN = \(\frac{1}{2}\)AC
Xét tam giác ABC có P là trung điểm AC, N là trung điểm BC
Suy ra PN là đường trung bình
Do đó PN // AB, PN = \(\frac{1}{2}\)AB
Xét tứ giác APNM có
AP // MN, AM // PN
Suy ra APNM là hình bình hành
Do đó \(\widehat {BAC} = \widehat {MNP}\)
Xét tam giác ABC và tam giác NPM có
\(\frac{{AB}}{{NP}} = \frac{{AC}}{{MN}} = 2\)
\(\widehat {BAC} = \widehat {MNP}\)
Suy ra (c.g.c) theo tỉ lệ là 2
Mà H, H’ là trực tâm tam giác ABC và tam giác NPM
Suy ra \(\frac{{CH}}{{MH'}} = 2\)
Hay CH = 2MH’ (1)
Mặt khác CH ⊥ AB, MH’⊥ PN, AB // PN
Suy ra MH’ // CH (2)
Từ (1) và (2) suy ra \(\overrightarrow {CH} = 2\overrightarrow {H'M} \)
Ta có \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HH'} + \overrightarrow {H'A} + \overrightarrow {HH'} + \overrightarrow {H'B} + \overrightarrow {HC} \)
\( = 2\overrightarrow {HH'} + (\overrightarrow {H'A} + \overrightarrow {H'B} ) + \overrightarrow {HC} = 2\overrightarrow {HH'} + (\overrightarrow {H'A} + \overrightarrow {AM} + \overrightarrow {H'B} + \overrightarrow {BM} ) + \overrightarrow {HC} \)
\( = 2\overrightarrow {HH'} + (\overrightarrow {H'M} + \overrightarrow {H'M} ) + \overrightarrow {HC} = 2\overrightarrow {HH'} + 2\overrightarrow {H'M} + \overrightarrow {HC} \)
\( = 2\overrightarrow {HH'} + \overrightarrow {CH} + \overrightarrow {HC} = 2\overrightarrow {HH'} = \overrightarrow {HK} \)
Vậy ta chọn đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a) y = f(x) = \(\frac{{3x + 1}}{{{x^2} + 2(m - 1)x + {m^2} + 3m + 5}}\)
b) y = f(x) = \(\sqrt {{x^2} + 2\left( {m - 1} \right)x + {m^2} + m - 6} \)
c) y = f(x) = \(\frac{{3x + 5}}{{{x^2} - 2(m + 3)x + m + 9}}\)
Câu 2:
Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng:
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Câu 3:
Cho tam giác ABC có AB = 2, BC = 4, CA = 3.
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \), rồi suy ra cosA
b) Gọi G là trọng tâm của △ABC. Tính \(\overrightarrow {AG} .\overrightarrow {BC} \)
c) Tính giá trị biểu thức S = \(\overrightarrow {GA} .\overrightarrow {GB} + \overrightarrow {GB} .\overrightarrow {GC} + \overrightarrow {GC} .\overrightarrow {GA} \)
d) Gọi AD là phân giác trong của góc BAC (D ∈ BC). Tính \(\overrightarrow {A{\rm{D}}} \) theo \(\overrightarrow {AB} ;\overrightarrow {AC} \)suy ra AD.
Câu 4:
Một thiết bị gồm có 3 bộ phận. Trong khoảng thời gian T, việc các bộ phận đó bị hỏng là độc lập với nhau và với các xác suất tương ứng là: 0,1; 0,2; 0,3. Cả thiết bị sẽ bị hỏng nếu có ít nhất một bộ phận hư hỏng. Tìm xác suất thiết bị hoạt động tốt trong thời gian T đó.
Câu 5:
Tỉ lệ phế phẩm của một nhà máy là 5%. Tìm xác xuất để trong 12 sản phẩm do nhà máy đó sản xuất ra có
a) 2 phế phẩm
b) không quá 2 phế phẩm.
Câu 6:
Cho tứ giác ABCD có AB = AD; CB = CD (ta gọi tứ ABCD trong trường hợp này là tứ giác có hình ảnh cánh diều)
a) Chứng minh AC là đường trung trực của BD
b) Tính góc B và góc D (biết \(\widehat A = 100^\circ ,\widehat C = 60^\circ \)).
Câu 7:
Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)2 , ∀ x ∈ R. Số điểm cực tiểu của hàm số đã cho là
về câu hỏi!