Câu hỏi:
25/04/2023 2,255
Cho tam giác ABC bất kì, gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. H, H' lần lượt là trực tâm của tam giá ABC, MNP. Điểm K đối xứng H qua H'. Khẳng định nào sau đây đúng?
Cho tam giác ABC bất kì, gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. H, H' lần lượt là trực tâm của tam giá ABC, MNP. Điểm K đối xứng H qua H'. Khẳng định nào sau đây đúng?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là B

Xét tam giác ABC có M là trung điểm AB, N là trung điểm BC
Suy ra MN là đường trung bình
Do đó MN // AC, MN = \(\frac{1}{2}\)AC
Xét tam giác ABC có P là trung điểm AC, N là trung điểm BC
Suy ra PN là đường trung bình
Do đó PN // AB, PN = \(\frac{1}{2}\)AB
Xét tứ giác APNM có
AP // MN, AM // PN
Suy ra APNM là hình bình hành
Do đó \(\widehat {BAC} = \widehat {MNP}\)
Xét tam giác ABC và tam giác NPM có
\(\frac{{AB}}{{NP}} = \frac{{AC}}{{MN}} = 2\)
\(\widehat {BAC} = \widehat {MNP}\)
Suy ra (c.g.c) theo tỉ lệ là 2
Mà H, H’ là trực tâm tam giác ABC và tam giác NPM
Suy ra \(\frac{{CH}}{{MH'}} = 2\)
Hay CH = 2MH’ (1)
Mặt khác CH ⊥ AB, MH’⊥ PN, AB // PN
Suy ra MH’ // CH (2)
Từ (1) và (2) suy ra \(\overrightarrow {CH} = 2\overrightarrow {H'M} \)
Ta có \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HH'} + \overrightarrow {H'A} + \overrightarrow {HH'} + \overrightarrow {H'B} + \overrightarrow {HC} \)
\( = 2\overrightarrow {HH'} + (\overrightarrow {H'A} + \overrightarrow {H'B} ) + \overrightarrow {HC} = 2\overrightarrow {HH'} + (\overrightarrow {H'A} + \overrightarrow {AM} + \overrightarrow {H'B} + \overrightarrow {BM} ) + \overrightarrow {HC} \)
\( = 2\overrightarrow {HH'} + (\overrightarrow {H'M} + \overrightarrow {H'M} ) + \overrightarrow {HC} = 2\overrightarrow {HH'} + 2\overrightarrow {H'M} + \overrightarrow {HC} \)
\( = 2\overrightarrow {HH'} + \overrightarrow {CH} + \overrightarrow {HC} = 2\overrightarrow {HH'} = \overrightarrow {HK} \)
Vậy ta chọn đáp án B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số f(x) luôn xác định trên R

Vậy m > \(\frac{{ - 4}}{5}\).
b) Hàm số f(x) luôn xác định trên R

Vậy m ≥ \(\frac{7}{3}\).
c) ) Hàm số f(x) luôn xác định trên R

Vậy – 5 < m < 0.
Lời giải
Ta có :
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)
\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)
\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.