Câu hỏi:

25/04/2023 4,254

Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)2 , x R. Số điểm cực tiểu của hàm số đã cho là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là C

Ta có:

f’(x) = 0 x(x − 1)2 = 0 \(\left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Ta xét dấu của f’ (x)

Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)^2 , với mọi x thuộc R. Số điểm cực tiểu  (ảnh 1)

Ta thấy đạo hàm đổi dấu đúng 1 lần nên hàm số đã cho có đúng 1 cực trị

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hàm số f(x) luôn xác định trên R

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R) (ảnh 1)

Vậy m > \(\frac{{ - 4}}{5}\).

b) Hàm số f(x) luôn xác định trên R

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R) (ảnh 2)

Vậy m ≥ \(\frac{7}{3}\).

c) ) Hàm số f(x) luôn xác định trên R

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R) (ảnh 3)

Vậy – 5 < m < 0.

Lời giải

Ta có :

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)

\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)

\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)

Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP