Câu hỏi:

13/07/2024 1,508

Cho tam giác ABC và ABD vuông có chung cạnh huyền AB ( C, D cùng thuộc 1 nua mp có bờ là AB).

a) Chứng minh A, B , C, D cùng thuộc 1 đường tròn và gọi đường tròn đó có tâm O

b) Chứng minh CD < AB.

c) Giả sử 2 đoạn thẳng CD cắt AB tại M. Chứng minh OM = \(\frac{{MA + MB}}{2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC và ABD vuông có chung cạnh huyền AB ( C, D cùng  (ảnh 1)

a) Gọi O là trung điểm của AB

Vì tam giác ABC vuông tại C

Nên C thuộc đường tròn (O) đường kính AB

Vì tam giác ABD vuông tại D

Nên D thuộc đường tròn (O) đường kính AB

Suy ra A, B, C, D cùng thuộc đường tròn (O)

b) Xét (O) có

AB là đường kính

CD là dây cung

Do đo: CD < AB

c) Ta có MA + MB = AB = 2OM (vì O là trung điểm của AB)

Suy ra OM = \(\frac{{MA + MB}}{2}\)

Vậy OM = \(\frac{{MA + MB}}{2}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hàm số f(x) luôn xác định trên R

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R) (ảnh 1)

Vậy m > \(\frac{{ - 4}}{5}\).

b) Hàm số f(x) luôn xác định trên R

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R) (ảnh 2)

Vậy m ≥ \(\frac{7}{3}\).

c) ) Hàm số f(x) luôn xác định trên R

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R) (ảnh 3)

Vậy – 5 < m < 0.

Lời giải

Ta có :

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)

\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)

\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)

Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay