Câu hỏi:
13/07/2024 1,616
Cho tam giác ABC và ABD vuông có chung cạnh huyền AB ( C, D cùng thuộc 1 nua mp có bờ là AB).
a) Chứng minh A, B , C, D cùng thuộc 1 đường tròn và gọi đường tròn đó có tâm O
b) Chứng minh CD < AB.
c) Giả sử 2 đoạn thẳng CD cắt AB tại M. Chứng minh OM = \(\frac{{MA + MB}}{2}\).
Cho tam giác ABC và ABD vuông có chung cạnh huyền AB ( C, D cùng thuộc 1 nua mp có bờ là AB).
a) Chứng minh A, B , C, D cùng thuộc 1 đường tròn và gọi đường tròn đó có tâm O
b) Chứng minh CD < AB.
c) Giả sử 2 đoạn thẳng CD cắt AB tại M. Chứng minh OM = \(\frac{{MA + MB}}{2}\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) Gọi O là trung điểm của AB
Vì tam giác ABC vuông tại C
Nên C thuộc đường tròn (O) đường kính AB
Vì tam giác ABD vuông tại D
Nên D thuộc đường tròn (O) đường kính AB
Suy ra A, B, C, D cùng thuộc đường tròn (O)
b) Xét (O) có
AB là đường kính
CD là dây cung
Do đo: CD < AB
c) Ta có MA + MB = AB = 2OM (vì O là trung điểm của AB)
Suy ra OM = \(\frac{{MA + MB}}{2}\)
Vậy OM = \(\frac{{MA + MB}}{2}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số f(x) luôn xác định trên R

Vậy m > \(\frac{{ - 4}}{5}\).
b) Hàm số f(x) luôn xác định trên R

Vậy m ≥ \(\frac{7}{3}\).
c) ) Hàm số f(x) luôn xác định trên R

Vậy – 5 < m < 0.
Lời giải
Ta có :
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)
\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)
\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.