Câu hỏi:
13/07/2024 509Gọi G là trọng tâm tam giác ABC và I, J thỏa mãn \(\overrightarrow {IA} = 2\overrightarrow {IB} ,3\overrightarrow {J{\rm{A}}} + 2\overrightarrow {JC} = \overrightarrow 0 \)
a) Phân tích \(\overrightarrow {{\rm{IJ}}} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \)
b) Chứng minh rằng IJ qua G.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có
\(\overrightarrow {IA} = 2\overrightarrow {IB} \Leftrightarrow \overrightarrow {IA} - 2\overrightarrow {IB} = \overrightarrow 0 \Leftrightarrow \overrightarrow {IA} - 2\overrightarrow {IA} - 2\overrightarrow {AB} = \overrightarrow 0 \Leftrightarrow \overrightarrow {AI} = 2\overrightarrow {AB} \)
\(3\overrightarrow {J{\rm{A}}} + 2\overrightarrow {JC} = \overrightarrow 0 \Leftrightarrow 3\overrightarrow {J{\rm{A}}} + 2\overrightarrow {JA} + 2\overrightarrow {AC} = \overrightarrow 0 \Leftrightarrow 5\overrightarrow {J{\rm{A}}} + 2\overrightarrow {AC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {AJ} = \frac{2}{5}\overrightarrow {AC} \)
Ta có \(\overrightarrow {IJ} = \overrightarrow {{\rm{AJ}}} - \overrightarrow {AI} = \frac{2}{5}\overrightarrow {AC} - 2\overrightarrow {AB} = - 2\left( {\overrightarrow {AB} - \frac{1}{5}\overrightarrow {AC} } \right)\) (1)
b) Ta có
\(\overrightarrow {JG} = \overrightarrow {{\rm{AG}}} - \overrightarrow {AJ} = \overrightarrow {AG} - \frac{2}{5}\overrightarrow {AC} = \frac{2}{3}\overrightarrow {AM} - \frac{2}{5}\overrightarrow {AC} \) (M là trung điểm của BC)
\(\frac{{\overrightarrow {AB} + \overrightarrow {AC} }}{3} - \frac{2}{5}\overrightarrow {AC} = \frac{1}{3}\overrightarrow {AB} - \frac{1}{{15}}\overrightarrow {AC} = \frac{1}{3}\left( {\overrightarrow {AB} - \frac{1}{5}\overrightarrow {AC} } \right)\) (2)
Từ (1) và (2) suy ra \(\overrightarrow {{\rm{IJ}}} = - 6\overrightarrow {JG} \)
Do đó I, J, G thẳng hàng
Vậy IJ qua G.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a) y = f(x) = \(\frac{{3x + 1}}{{{x^2} + 2(m - 1)x + {m^2} + 3m + 5}}\)
b) y = f(x) = \(\sqrt {{x^2} + 2\left( {m - 1} \right)x + {m^2} + m - 6} \)
c) y = f(x) = \(\frac{{3x + 5}}{{{x^2} - 2(m + 3)x + m + 9}}\)
Câu 2:
Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng:
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Câu 3:
Cho tam giác ABC có AB = 2, BC = 4, CA = 3.
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \), rồi suy ra cosA
b) Gọi G là trọng tâm của △ABC. Tính \(\overrightarrow {AG} .\overrightarrow {BC} \)
c) Tính giá trị biểu thức S = \(\overrightarrow {GA} .\overrightarrow {GB} + \overrightarrow {GB} .\overrightarrow {GC} + \overrightarrow {GC} .\overrightarrow {GA} \)
d) Gọi AD là phân giác trong của góc BAC (D ∈ BC). Tính \(\overrightarrow {A{\rm{D}}} \) theo \(\overrightarrow {AB} ;\overrightarrow {AC} \)suy ra AD.
Câu 4:
Một thiết bị gồm có 3 bộ phận. Trong khoảng thời gian T, việc các bộ phận đó bị hỏng là độc lập với nhau và với các xác suất tương ứng là: 0,1; 0,2; 0,3. Cả thiết bị sẽ bị hỏng nếu có ít nhất một bộ phận hư hỏng. Tìm xác suất thiết bị hoạt động tốt trong thời gian T đó.
Câu 5:
Tỉ lệ phế phẩm của một nhà máy là 5%. Tìm xác xuất để trong 12 sản phẩm do nhà máy đó sản xuất ra có
a) 2 phế phẩm
b) không quá 2 phế phẩm.
Câu 6:
Cho tứ giác ABCD có AB = AD; CB = CD (ta gọi tứ ABCD trong trường hợp này là tứ giác có hình ảnh cánh diều)
a) Chứng minh AC là đường trung trực của BD
b) Tính góc B và góc D (biết \(\widehat A = 100^\circ ,\widehat C = 60^\circ \)).
Câu 7:
Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)2 , ∀ x ∈ R. Số điểm cực tiểu của hàm số đã cho là
về câu hỏi!