Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SD = \(\frac{3}{2}a\). Hình chiếu vuông góc của S lên mặt đáy (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ A đến mặt phẳng (SBD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SD = \(\frac{3}{2}a\). Hình chiếu vuông góc của S lên mặt đáy (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ A đến mặt phẳng (SBD).
Quảng cáo
Trả lời:


Gọi H là trung điểm của AB
Suy ra SH ⊥ (ACBD)
Do đó SH ⊥ HD
Hay tam giác SHD vuông tại H
Suy ra \(SH = \sqrt {S{{\rm{D}}^2} - D{H^2}} \)
Vì tam giác AHD vuông tại A
Nên \(D{H^2} = A{H^2} + A{{\rm{D}}^2} = \frac{{{a^2}}}{4} + {a^2} = \frac{5}{4}{a^2}\)
Suy ra \(SH = \sqrt {S{{\rm{D}}^2} - D{H^2}} = \sqrt {\frac{9}{4}{a^2} - \frac{5}{4}{a^2}} = \sqrt {{a^2}} = a\)
Ta có \({V_{S.ABC{\rm{D}}}} = \frac{1}{3}.SH.{S_{ABC{\rm{D}}}} = \frac{1}{3}.a.{a^2} = \frac{{{a^3}}}{3}\)
Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H trên SK
Ta có
\(\left\{ \begin{array}{l}B{\rm{D}} \bot HK\\B{\rm{D}} \bot SH\end{array} \right. \Rightarrow BH \bot (SHK)\)
Suy ra BD ⊥ HE
Mà SK ⊥ HE nên HE ⊥ (SBD)
Ta có: HK = HB . sin \(\widehat {KBH}\) = \(\frac{a}{2}.\sin 45^\circ = \frac{a}{2}.\frac{{\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\)
Suy ra \(HE = \frac{{HS.HK}}{{\sqrt {H{{\rm{S}}^2} + H{K^2}} }} = \frac{{a.\frac{{a\sqrt 2 }}{4}}}{{\sqrt {{a^2} + \frac{{2{{\rm{a}}^2}}}{{16}}} }} = \frac{{{a^2}\sqrt 2 }}{{4\sqrt {\frac{9}{8}{a^2}} }} = \frac{a}{3}\)
Do đó d(A,(SBD) = 2 d(H,(SBD)) = 2 HE = \(\frac{{2{\rm{a}}}}{3}\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số f(x) luôn xác định trên R

Vậy m > \(\frac{{ - 4}}{5}\).
b) Hàm số f(x) luôn xác định trên R

Vậy m ≥ \(\frac{7}{3}\).
c) ) Hàm số f(x) luôn xác định trên R

Vậy – 5 < m < 0.
Lời giải
Ta có :
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)
\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)
\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.