Câu hỏi:
13/07/2024 353Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SD = \(\frac{3}{2}a\). Hình chiếu vuông góc của S lên mặt đáy (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ A đến mặt phẳng (SBD).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi H là trung điểm của AB
Suy ra SH ⊥ (ACBD)
Do đó SH ⊥ HD
Hay tam giác SHD vuông tại H
Suy ra \(SH = \sqrt {S{{\rm{D}}^2} - D{H^2}} \)
Vì tam giác AHD vuông tại A
Nên \(D{H^2} = A{H^2} + A{{\rm{D}}^2} = \frac{{{a^2}}}{4} + {a^2} = \frac{5}{4}{a^2}\)
Suy ra \(SH = \sqrt {S{{\rm{D}}^2} - D{H^2}} = \sqrt {\frac{9}{4}{a^2} - \frac{5}{4}{a^2}} = \sqrt {{a^2}} = a\)
Ta có \({V_{S.ABC{\rm{D}}}} = \frac{1}{3}.SH.{S_{ABC{\rm{D}}}} = \frac{1}{3}.a.{a^2} = \frac{{{a^3}}}{3}\)
Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H trên SK
Ta có
\(\left\{ \begin{array}{l}B{\rm{D}} \bot HK\\B{\rm{D}} \bot SH\end{array} \right. \Rightarrow BH \bot (SHK)\)
Suy ra BD ⊥ HE
Mà SK ⊥ HE nên HE ⊥ (SBD)
Ta có: HK = HB . sin \(\widehat {KBH}\) = \(\frac{a}{2}.\sin 45^\circ = \frac{a}{2}.\frac{{\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\)
Suy ra \(HE = \frac{{HS.HK}}{{\sqrt {H{{\rm{S}}^2} + H{K^2}} }} = \frac{{a.\frac{{a\sqrt 2 }}{4}}}{{\sqrt {{a^2} + \frac{{2{{\rm{a}}^2}}}{{16}}} }} = \frac{{{a^2}\sqrt 2 }}{{4\sqrt {\frac{9}{8}{a^2}} }} = \frac{a}{3}\)
Do đó d(A,(SBD) = 2 d(H,(SBD)) = 2 HE = \(\frac{{2{\rm{a}}}}{3}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a) y = f(x) = \(\frac{{3x + 1}}{{{x^2} + 2(m - 1)x + {m^2} + 3m + 5}}\)
b) y = f(x) = \(\sqrt {{x^2} + 2\left( {m - 1} \right)x + {m^2} + m - 6} \)
c) y = f(x) = \(\frac{{3x + 5}}{{{x^2} - 2(m + 3)x + m + 9}}\)
Câu 2:
Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng:
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Câu 3:
Cho tam giác ABC có AB = 2, BC = 4, CA = 3.
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \), rồi suy ra cosA
b) Gọi G là trọng tâm của △ABC. Tính \(\overrightarrow {AG} .\overrightarrow {BC} \)
c) Tính giá trị biểu thức S = \(\overrightarrow {GA} .\overrightarrow {GB} + \overrightarrow {GB} .\overrightarrow {GC} + \overrightarrow {GC} .\overrightarrow {GA} \)
d) Gọi AD là phân giác trong của góc BAC (D ∈ BC). Tính \(\overrightarrow {A{\rm{D}}} \) theo \(\overrightarrow {AB} ;\overrightarrow {AC} \)suy ra AD.
Câu 4:
Một thiết bị gồm có 3 bộ phận. Trong khoảng thời gian T, việc các bộ phận đó bị hỏng là độc lập với nhau và với các xác suất tương ứng là: 0,1; 0,2; 0,3. Cả thiết bị sẽ bị hỏng nếu có ít nhất một bộ phận hư hỏng. Tìm xác suất thiết bị hoạt động tốt trong thời gian T đó.
Câu 5:
Tỉ lệ phế phẩm của một nhà máy là 5%. Tìm xác xuất để trong 12 sản phẩm do nhà máy đó sản xuất ra có
a) 2 phế phẩm
b) không quá 2 phế phẩm.
Câu 6:
Cho tứ giác ABCD có AB = AD; CB = CD (ta gọi tứ ABCD trong trường hợp này là tứ giác có hình ảnh cánh diều)
a) Chứng minh AC là đường trung trực của BD
b) Tính góc B và góc D (biết \(\widehat A = 100^\circ ,\widehat C = 60^\circ \)).
Câu 7:
Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)2 , ∀ x ∈ R. Số điểm cực tiểu của hàm số đã cho là
về câu hỏi!