Câu hỏi:

25/04/2023 1,112

Cho tam giác ABC. Gọi I là trung điểm của BC; D và E là hai điểm sao cho \(\overrightarrow {B{\rm{D}}} = \overrightarrow {DE} = \overrightarrow {EC} \)

a) Chứng minh: \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {A{\rm{E}}} \)

b) Tính véctơ: \(\overrightarrow {AS} = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} + \overrightarrow {A{\rm{E}}} \) theo \(\overrightarrow {AI} \)

c) Suy ra ba điểm A, I, S thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {DB} + \overrightarrow {A{\rm{E}}} + \overrightarrow {EC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {A{\rm{E}}} - \overrightarrow {B{\rm{D}}} + \overrightarrow {EC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {A{\rm{E}}} \)

(Vì \(\overrightarrow {B{\rm{D}}} = \overrightarrow {EC} \))

b) Ta có: \(\overrightarrow {AS} = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} + \overrightarrow {A{\rm{E}}} = 2(\overrightarrow {AB} + \overrightarrow {AC} )\)

(vì \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {A{\rm{E}}} \))

Do I là trung điểm của BC nên \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AI} \)

Suy ra \(\overrightarrow {AS} = 2(\overrightarrow {AB} + \overrightarrow {AC} ) = 4\overrightarrow {AI} \)

c) Theo câu b ta có \(\overrightarrow {AS} = 4\overrightarrow {AI} \)

suy ra A, I, S thẳng hàng

Vậy A, I, S thẳng hàng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hàm số f(x) luôn xác định trên R

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R) (ảnh 1)

Vậy m > \(\frac{{ - 4}}{5}\).

b) Hàm số f(x) luôn xác định trên R

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R) (ảnh 2)

Vậy m ≥ \(\frac{7}{3}\).

c) ) Hàm số f(x) luôn xác định trên R

Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R) (ảnh 3)

Vậy – 5 < m < 0.

Lời giải

Ta có :

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)

\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)

\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)

Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay