Cho tam giác ABC. Tìm tập hợp các điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\)
Cho tam giác ABC. Tìm tập hợp các điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\)
A. Đường tròn tâm G đường kính BC
B. Đường tròn tâm G đường kính \(\frac{1}{3}\)BC
C. Đường tròn tâm G bán kính \(\frac{1}{3}\)BC
D. Đường tròn tâm G bán kính 3MG.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi G là trọng tâm tam giác ABC
Suy ra \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
Ta có:
Vậy tập hợp điểm M thuộc tròn tâm G bán kính \(\frac{1}{3}\)BC.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số f(x) luôn xác định trên R
Vậy m > \(\frac{{ - 4}}{5}\).
b) Hàm số f(x) luôn xác định trên R
Vậy m ≥ \(\frac{7}{3}\).
c) ) Hàm số f(x) luôn xác định trên R
Vậy – 5 < m < 0.
Lời giải
Ta có :
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CF} + \overrightarrow {FD} + \overrightarrow {EB} + \overrightarrow {BF} \)
\( = (\overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} ) + (\overrightarrow {FD} + \overrightarrow {DB} + \overrightarrow {BF} ) = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow {FF} \)
\( = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} + \overrightarrow 0 = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.