Câu hỏi:

12/07/2024 2,159

Cho ΔABC vuông tại A, \(BC = 3\sqrt 5 \) cm. Hình vuông ADEF có cạnh 2 cm, D AB, E BC, F AC.

a) Tính AB, AC.

b) Tính diện tích, chu vi ΔABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Đặt BD = x, CF = y

Vì ADEF có hình vuông cạnh 2cm

Nên DE = FE = AD = FA = 2 cm và \(\widehat {A{\rm{D}}E} = \widehat {DEF} = \widehat {AFE} = 90^\circ \)

Hay DE AB

Mà AC AB

Suy ra AC // DE (quan hệ từ vuông góc đến song song)

Do đó \(\widehat {BE{\rm{D}}} = \widehat {ECF}\) (hai góc đồng vị)

Xét DBDE và DEFC có

\(\widehat {BE{\rm{D}}} = \widehat {ECF}\) (chứng minh trên)

\(\widehat {B{\rm{D}}E} = \widehat {{\rm{EFC}}}\left( { = 90^\circ } \right)\)

Do đó  (g.g)

Suy ra \(\frac{{BD}}{{FE}} = \frac{{F{\rm{E}}}}{{FC}}\)

Hay \(\frac{x}{2} = \frac{2}{y}\)

Suy ra xy = 4

Vì tam giác ABC vuông tại A

Nên AB2 + AC2 = BC2 (định lý Pytago)

Hay (x + 2)2 + (y + 2)2 = 45

x2 + y2 + 4(x + y) + 8 = 45

x2 + y2 + 4(x + y) = 37

(x + y)2 + 4(x + y) – 2xy = 37

(x + y)2 + 4(x + y) – 8 = 37

(x + y)2 + 4(x + y) – 45 = 0

(x + y – 5)(x + y + 9) = 0

\( \Leftrightarrow \left[ \begin{array}{l}x + y - 5 = 0\\x + y + 9 = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x + y = 5\\x + y = - 9\end{array} \right.\)

x + y = 5

x = 5 – y

Mà xy = 4

Suy ra y(5 – y) = 4

y – 5y + 4 = 0

(y – 1)(y – 4) = 0

\( \Leftrightarrow \left[ \begin{array}{l}y - 1 = 0\\y - 4 = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}y = 1\\y = 4\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = 1\end{array} \right.\)

Vậy AC = 4 cm, AB = 1 cm hoặc AC = 1 cm, AB = 4 cm.

b) Chu vi tam giác ABC là \(AB + AC + BC = 5 + 3\sqrt 5 \) cm

Diện tích tam giác ABC là: \[{{\rm{S}}_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.4 = 2\] cm2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Xét (O) có CA, CM là hai tiếp tuyến cắt nhau tại C

Suy ra AC = CM và OC là tia phân giác của \(\widehat {AOM}\)

Do đó \(\widehat {AOC} = \widehat {COM} = \frac{1}{2}\widehat {AOM}\)

Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại D

Suy ra BD = DM và OD là tia phân giác của \(\widehat {BOM}\)

Do đó \(\widehat {BOD} = \widehat {DOM} = \frac{1}{2}\widehat {BOM}\)

Ta có \(\widehat {COD} = \widehat {COM} + \widehat {DOM} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.180^\circ = 90^\circ \)

Vậy tam giác COD vuông tại O.

b) Xét tam giác COD vuông tại O có OM CD, theo hệ thức lượng trong tam giác vuông ta có: OM2 = CM . DM

Mà CM = AC, DM = BD (chứng minh câu a)

Suy ra AC . BD = R2.

c) Gọi I là giao điểm của MH và BC, K là giao điểm của MB và AC

Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại O, suy ra BM DO

Mà OC DO (chứng minh câu a)

Do đó OC // BM (quan hệ từ vuông góc đến song song)

Xét tam giác ABK có

O là trung điểm của AB; OC // BM

Suy ra C là trung điểm của AK

Do đó CA = CK

Ta có CA AB, MH AB nên CA // MH (quan hệ từ vuông góc đến song song)

Suy ra \(\frac{{MI}}{{CK}} = \frac{{BI}}{{BC}} = \frac{{IH}}{{AC}}\)

Mà CA = CK, suy ra MI = IH

Do đó I là trung điểm của MH

Vậy BC đi qua trung điểm của đoạn MH.

Lời giải

Lời giải

Media VietJack

Xét tam giác SAB có M, N là trung điểm SA, SB

Suy ra MN là đường trung bình

Do đó MN // AB

Mà AB // DC (vì ABCD là hình bình hành)

Suy ra MN // CD

Xét (MNP) và (SDC) có P là điểm chungMN // CD (chứng minh trên)

Suy ra giao tuyến qua P song song với MN, giao với SD tại Q

Do đó SD ∩ (MNP) = PQ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP