Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có \(\widehat {ABF} + \widehat {FBH} = 180^\circ \) (hai góc kề bù)
Hay \(\widehat {ABF} + 100^\circ = 180^\circ \)
Suy ra \(\widehat {ABF} = 180^\circ - 100^\circ = 80^\circ \)
Lại có \(\widehat {CAB} = 80^\circ \), do đó \(\widehat {CAB} = \widehat {ABF}\)
Mà hai góc này ở vị trí so le trong
Suy ra CD // EF
Vậy CD // EF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a) Chứng minh tam giác COD vuông tại O.
b) Chứng minh AC . BD = R2.
c) Kẻ MH vuông góc AB (H ∈ AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.
Câu 3:
Cho hàm số y = 2x + 3.
a) Vẽ đồ thị hàm số trên.
b) Gọi A, B là giao điểm của đồ thị với các trục tọa độ. Tính diện tích tam giác OAB (O là gốc tọa độ và đơn vị trên các trục tọa độ là cm).
c) Tính góc tạo bởi đường thẳng y = ax + b và trục Ox.
Câu 4:
Câu 5:
Câu 6:
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O; R). Vẽ AH vuông góc với BC. Từ H vẽ HM vuông góc với AB và HN vuông góc với AC (H ∈ BC, M ∈ AB, N ∈ AC). Vẽ đường kính AE cắt MN tại I, tia MN cắt đường tròn (O; R) tại K
a) Chứng minh tứ giác AMHN nội tiếp.
b) Chứng minh AE vuông góc với MN.
c) Chứng minh AH = AK.
Câu 7:
Cho đường tròn tâm O có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA.
a) Tứ giác OCAB là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại B, nó cắt đường thẳng OA tại E. Tính độ dài BE theo R.
về câu hỏi!