Câu hỏi:
12/07/2024 865
Cho 2 hàm số bậc nhất: y = mx + 3 và y = (2m + 1)x – 5. Tìm giá trị m để đồ thị của hai hàm số đã cho là:
a) hai đường thẳng song song.
b) hai đường thẳng cắt nhau.
Cho 2 hàm số bậc nhất: y = mx + 3 và y = (2m + 1)x – 5. Tìm giá trị m để đồ thị của hai hàm số đã cho là:
a) hai đường thẳng song song.
b) hai đường thẳng cắt nhau.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Điều kiện để hai hàm số là hàm số bậc nhất: m ≠ 0, \(m \ne \frac{{ - 1}}{2}\).
a) Hai đường thẳng đã cho là hai đường thẳng song song
\( \Leftrightarrow \left\{ \begin{array}{l}m = 2m + 1\\3 \ne - 5\end{array} \right. \Leftrightarrow m = - 1\) (thỏa mãn)
Vậy m = – 1.
b) Hai đường thẳng đã cho là hai đường thẳng cắt nhau
⇔ m ≠ 2m + 1
⇔ m ≠ – 1
Vậy m ≠ 0, \(m \ne \frac{{ - 1}}{2}\), m ≠ – 1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Xét (O) có CA, CM là hai tiếp tuyến cắt nhau tại C
Suy ra AC = CM và OC là tia phân giác của \(\widehat {AOM}\)
Do đó \(\widehat {AOC} = \widehat {COM} = \frac{1}{2}\widehat {AOM}\)
Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại D
Suy ra BD = DM và OD là tia phân giác của \(\widehat {BOM}\)
Do đó \(\widehat {BOD} = \widehat {DOM} = \frac{1}{2}\widehat {BOM}\)
Ta có \(\widehat {COD} = \widehat {COM} + \widehat {DOM} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.180^\circ = 90^\circ \)
Vậy tam giác COD vuông tại O.
b) Xét tam giác COD vuông tại O có OM ⊥ CD, theo hệ thức lượng trong tam giác vuông ta có: OM2 = CM . DM
Mà CM = AC, DM = BD (chứng minh câu a)
Suy ra AC . BD = R2.
c) Gọi I là giao điểm của MH và BC, K là giao điểm của MB và AC
Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại O, suy ra BM ⊥ DO
Mà OC ⊥ DO (chứng minh câu a)
Do đó OC // BM (quan hệ từ vuông góc đến song song)
Xét tam giác ABK có
O là trung điểm của AB; OC // BM
Suy ra C là trung điểm của AK
Do đó CA = CK
Ta có CA ⊥ AB, MH ⊥ AB nên CA // MH (quan hệ từ vuông góc đến song song)
Suy ra \(\frac{{MI}}{{CK}} = \frac{{BI}}{{BC}} = \frac{{IH}}{{AC}}\)
Mà CA = CK, suy ra MI = IH
Do đó I là trung điểm của MH
Vậy BC đi qua trung điểm của đoạn MH.
Lời giải
Lời giải
Xét tam giác SAB có M, N là trung điểm SA, SB
Suy ra MN là đường trung bình
Do đó MN // AB
Mà AB // DC (vì ABCD là hình bình hành)
Suy ra MN // CD
Xét (MNP) và (SDC) có P là điểm chung và MN // CD (chứng minh trên)
Suy ra giao tuyến qua P song song với MN, giao với SD tại Q
Do đó SD ∩ (MNP) = PQ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.