Câu hỏi:

13/07/2024 1,268

Cho hình chóp S.ABCD có đáy là hình bình hành. Các điểm I, J lần lượt là trọng tâm tam giác SAB, SAD. Gọi M là trung điểm của CD. Tìm giao đim E ca SD và mặt phẳng IJM.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Gọi P, Q lần lượt là trung điểm của AB, AD.

Khi đó PQ là đường trung bình của tam giác ABD nên PQ // BD.

Do I, J lần lượt là trọng tâm tam giác SAB, SAD nên \(\frac{{SI}}{{SP}} = \frac{2}{3} = \frac{{SJ}}{{SQ}}\).

Do đó IJ // PQ, suy ra IJ // BD

Có IJ // BD, IJ (IJM), BD (ABCD)

Þ giao tuyến của (IJM) và (ABCD) là đường thẳng qua M và song song với BD.

Đường thẳng này cắt AD tại N.

Khi đó mp(IJM) chính là mp (IJNM), mp(SAD) chính là mp(SAN)

Trong mp(SAN), JN cắt SD tại E.

Ta có: JN ∩ SD = {E}; JN (IJM)

Khi đó E là giao điểm của SD và (IJM).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ .

Xem đáp án » 17/05/2023 14,819

Câu 2:

Tìm m để đường thẳng y = 2x – 1 và y = 3x + m cắt nhau tại một điểm nằm trên trục hoành.

Xem đáp án » 13/07/2024 6,555

Câu 3:

Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:

a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).

b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).

c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).

Xem đáp án » 13/07/2024 6,178

Câu 4:

Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:

a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).

b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).

c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).

d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).

Xem đáp án » 11/07/2024 4,483

Câu 5:

Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.

a) Chứng minh tứ giác AEHF nội tiếp.

b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.

c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).

d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.

Xem đáp án » 13/07/2024 3,708

Câu 6:

Cho tam giác ABC, hai điểm M, N được xác định bởi \(3\overrightarrow {MA} + 4\overrightarrow {MB} = \vec 0\); \(\overrightarrow {NB} - 3\overrightarrow {NC} = \vec 0\). Chứng minh 3 điểm M, G, N thẳng hàng, với G là trọng tâm tam giác ABC.

Xem đáp án » 12/07/2024 3,604

Câu 7:

Tìm nghiệm nguyên của phương trình: 7(x2 + xy + y2) = 39(x + y).

Xem đáp án » 13/07/2024 3,299

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store