Câu hỏi:
12/07/2024 239Cho biểu thức \[P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\].
a) Tìm x nguyên để P nhận giá trị nguyên.
b) Tìm x sao cho P > 1.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Với x ≥ 0, x ≠ 1 ta có:
\[P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} = \frac{{\sqrt x - 1 + 2}}{{\sqrt x - 1}} = 1 + \frac{2}{{\sqrt x - 1}}\].
Với x nguyên, để P nguyên thì \[\frac{2}{{\sqrt x - 1}}\] nguyên
\( \Leftrightarrow \sqrt x - 1 \in U\left( 2 \right) = \left\{ {1; - 1;2; - 2} \right\}\)
\( \Leftrightarrow \sqrt x \in \left\{ {2;0;3; - 1} \right\}\)
Mà \(\sqrt x \ge 0\) với mọi x ≥ 0 nên \(\sqrt x \in \left\{ {2;0;3} \right\}\)
Þ x ∈ {4; 0; 9}.
Vậy x ∈ {4; 0; 9} thỏa mãn yêu cầu đề bài.
b) Với x ≥ 0, x ≠ 1 ta có, để P > 1
\( \Leftrightarrow 1 + \frac{2}{{\sqrt x - 1}} > 1 \Leftrightarrow \frac{2}{{\sqrt x - 1}} > 0 \Leftrightarrow \sqrt x - 1 > 0 \Leftrightarrow \sqrt x > 1 \Leftrightarrow x > 1\) (thỏa mãn)
Vậy x > 1 thỏa mãn yêu cầu đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Câu 7:
về câu hỏi!