Câu hỏi:
13/07/2024 242Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Gọi I, J lần lượt là trung điểm của BC, AC.
Gọi K là trọng tâm của tam giác JBC.
Theo đề, ta có \(\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} = \vec 0\).
\( \Leftrightarrow \left( {\overrightarrow {MB} + \overrightarrow {MC} } \right)\left( {\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right) = \vec 0\)
\( \Leftrightarrow 2\overrightarrow {MI} \left( {\overrightarrow {MA} + \overrightarrow {MC} + 2\overrightarrow {MB} + 2\overrightarrow {MC} } \right) = \vec 0\)
\[ \Leftrightarrow 2\overrightarrow {MI} \left( {2\overrightarrow {MJ} + 2\overrightarrow {MB} + 2\overrightarrow {MC} } \right) = \vec 0\]
\[ \Leftrightarrow 4\overrightarrow {MI} \left( {\overrightarrow {MJ} + \overrightarrow {MB} + \overrightarrow {MC} } \right) = \vec 0\]
\[ \Leftrightarrow 4\overrightarrow {MI} .3\overrightarrow {MK} = \vec 0\]
\[ \Leftrightarrow \overrightarrow {MI} .\overrightarrow {MK} = \vec 0\]
\( \Leftrightarrow \overrightarrow {MI} \bot \overrightarrow {MK} \)
\( \Leftrightarrow \widehat {IMK} = 90^\circ \).
Khi đó ta thấy điểm M luôn nhìn đoạn IK một góc 90°.
Vậy tập hợp các điểm M thỏa mãn yêu cầu bài toán là đường tròn đường kính IK.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Câu 7:
về câu hỏi!