Câu hỏi:
17/05/2023 317Đơn giản biểu thức sau khi bỏ dấu ngoặc:
a) (a + b – c) – (b – c + d);
b) –(a – b + c) + (a – b + d);
c) (a + b) – (–a + b – c);
d) –(a + b) + (a + b + c);
e) (a – b + c) – (a – b + c);
f) –(a – b – c) + (a – b – c).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
a) (a + b – c) – (b – c + d)
= a + b – c – b + c – d
= a + (b – b) + (–c + c) – d
= a – d.
b) –(a – b + c) + (a – b + d)
= –a + b – c + a – b + d
= (a – a) + (b – b) – c + d
= d – c.
c) (a + b) – (–a + b – c)
= a + b + a – b + c
= (a + a) + (b – b) + c
= 2a + c.
d) –(a + b) + (a + b + c)
= –a – b + a + b + c
= (–a + a) + (–b + b) + c
= c.
e) (a – b + c) – (a – b + c)
= a – b + c – a + b – c
= (a – a) + (–b + b) + (c – c)
= 0.
f) –(a – b – c) + (a – b – c)
= –a + b + c + a – b – c
= (–a + a) + (b – b) + (c – c)
= 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Câu 5:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 6:
Câu 7:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
về câu hỏi!