Câu hỏi:
13/07/2024 1,292
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆ADB và ∆ADC, có:
AD là cạnh chung;
BD = CD (D là trung điểm BC);
AB = AC (giả thiết).
Do đó ∆ADB = ∆ADC (c.c.c).
b) Ta có ∆ADB = ∆ADC (kết quả câu a).
Suy ra \(\widehat {BAD} = \widehat {CAD}\) và \(\widehat {ABD} = \widehat {ACD}\) (các cặp góc tương ứng).
Vậy AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) Ta có ∆ADB = ∆ADC (kết quả câu a).
Suy ra \(\widehat {ADB} = \widehat {ADC}\) (cặp góc tương ứng).
Mà \(\widehat {ADB} + \widehat {ADC} = 180^\circ \) (cặp góc kề bù).
Khi đó \(\widehat {ADB} = \widehat {ADC} = 90^\circ \).
Vậy AD ⊥ BC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
– Lấy nước đổ vào đầy cái cốc loại 250 ml, sau đó đổ hết vào cái cốc loại 400 ml.
– Tiếp tục lấy nước đổ vào đầy cái cốc loại 250 ml, sau đó đổ vào cái cốc loại 400 ml cho đến khi cái cốc loại 400 ml chứa đầy nước.
– Khi đó trong cái cốc loại 250 ml còn lại 100 ml nước.
Lời giải
Lời giải
Đáp án đúng là: B
Để X ∩ Y ≠ ∅ thì a < 3.
So với điều kiện a ≤ 4, ta nhận a < 3.
Vậy a < 3 thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.