Câu hỏi:

11/07/2024 3,045

Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.

a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).

b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.

c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét ∆ABD và ∆ACD, có:

AD là cạnh chung;

BD = CD (D là trung điểm BC);

AB = AC (giả thiết).

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra \(\widehat {BAD} = \widehat {CAD}\) (cặp góc tương ứng).

Vậy ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).

b) Xét ∆ADM và ∆ADN, có:

AD là cạnh chung;

AM = AN (giả thiết);

\(\widehat {MAD} = \widehat {NAD}\) (AD là tia phân giác của \(\widehat {BAC}\)).

Do đó ∆ADM = ∆ADN (c.g.c).

Suy ra \(\widehat {AND} = \widehat {AMD} = 90^\circ \) (cặp góc tương ứng).

Vậy ∆ADM = ∆ADN và DN AC.

c) Ta có KE = KD (giả thiết).

Suy ra K là trung điểm DE.

Mà K cũng là trung điểm của CN (giả thiết).

Do đó tứ giác CDNE là hình bình hành.

Vì vậy NE // CD   (1)

Ta có AM = AN (giả thiết) và AB = AC (giả thiết).

Suy ra \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\).

Áp dụng định lí Thales đảo, ta được MN // BC   (2)

Từ (1) , (2), suy ra MN ≡ NE.

Vậy ba điểm M, E, N thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

– Lấy nước đổ vào đầy cái cốc loại 250 ml, sau đó đổ hết vào cái cốc loại 400 ml.

– Tiếp tục lấy nước đổ vào đầy cái cốc loại 250 ml, sau đó đổ vào cái cốc loại 400 ml cho đến khi cái cốc loại 400 ml chứa đầy nước.

– Khi đó trong cái cốc loại 250 ml còn lại 100 ml nước.

Câu 2

Lời giải

Lời giải

Đáp án đúng là: B

Media VietJack

Để X ∩ Y ≠ thì a < 3.

So với điều kiện a ≤ 4, ta nhận a < 3.

Vậy a < 3 thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP