Câu hỏi:
11/07/2024 1,042Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.
c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆ABD và ∆ACD, có:
AD là cạnh chung;
BD = CD (D là trung điểm BC);
AB = AC (giả thiết).
Do đó ∆ABD = ∆ACD (c.c.c).
Suy ra \(\widehat {BAD} = \widehat {CAD}\) (cặp góc tương ứng).
Vậy ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Xét ∆ADM và ∆ADN, có:
AD là cạnh chung;
AM = AN (giả thiết);
\(\widehat {MAD} = \widehat {NAD}\) (AD là tia phân giác của \(\widehat {BAC}\)).
Do đó ∆ADM = ∆ADN (c.g.c).
Suy ra \(\widehat {AND} = \widehat {AMD} = 90^\circ \) (cặp góc tương ứng).
Vậy ∆ADM = ∆ADN và DN ⊥ AC.
c) Ta có KE = KD (giả thiết).
Suy ra K là trung điểm DE.
Mà K cũng là trung điểm của CN (giả thiết).
Do đó tứ giác CDNE là hình bình hành.
Vì vậy NE // CD (1)
Ta có AM = AN (giả thiết) và AB = AC (giả thiết).
Suy ra \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\).
Áp dụng định lí Thales đảo, ta được MN // BC (2)
Từ (1) , (2), suy ra MN ≡ NE.
Vậy ba điểm M, E, N thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Câu 7:
về câu hỏi!