Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta xét phương trình: 5sin2x + 3sinxcosx – 4cos2x = 2 (1)
Với cosx = 0 ta có (1) trở thành:
5sin2x = 2 \( \Leftrightarrow {\sin ^2}x = \frac{2}{5}\) (vô lí vì khi cosx = 0 thì cos2x = 0 nên sin2x = 1)
Với cosx ≠ 0, ta chia 2 vế của (1) cho cos2x được:
\(5.\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + 3.\frac{{sinxcosx}}{{{{\cos }^2}x}} - 4.\frac{{{{\cos }^2}x}}{{{{\cos }^2}x}} = \frac{2}{{{{\cos }^2}x}}\)
Û 5tan2x + 3tanx – 4 = 2(tan2x + 1)
Û 3tan2x + 3tanx – 6 = 0
Û tan2x + tanx – 2 = 0
Û (tanx – 1)(tanx + 2) = 0
\( \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = - 2\end{array} \right.\)
\[ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = \arctan \left( { - 2} \right) + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\] (thỏa mãn)
Vậy phương trình đã cho có nghiệm là \[x = \frac{\pi }{4} + k\pi ;\,\,x = \arctan \left( { - 2} \right) + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Câu 7:
về câu hỏi!