Câu hỏi:
12/07/2024 447Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Đặt n = 2018. Suy ra n + 1 = 2019 và n2 + n + 1 > 0.
Ta có \(A = \sqrt {{{2018}^2} + {{2018}^2}{{.2019}^2} + {{2019}^2}} \)
\( = \sqrt {{n^2} + {n^2}.{{\left( {n + 1} \right)}^2} + {{\left( {n + 1} \right)}^2}} \)
\( = \sqrt {{n^2} + {n^2}.\left( {{n^2} + 2n + 1} \right) + {n^2} + 2n + 1} \)
\( = \sqrt {{n^2} + {n^4} + 2{n^3} + {n^2} + {n^2} + 2n + 1} \)
\( = \sqrt {{n^4} + 2{n^2}\left( {n + 1} \right) + {{\left( {n + 1} \right)}^2}} \)
\( = \sqrt {{{\left( {{n^2} + n + 1} \right)}^2}} \)
= |n2 + n + 1|
= n2 + n + 1.
Ta thấy n = 2018 là một số tự nhiên.
Suy ra n2 là một số tự nhiên.
Do đó n2 + n + 1 là một số tự nhiên.
Vậy A là một số tự nhiên.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Câu 7:
về câu hỏi!