Câu hỏi:
17/05/2023 204Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có \(\cos \left( {2x + \frac{\pi }{4}} \right) = \frac{1}{2}\).
\[ \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\2x + \frac{\pi }{4} = - \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{{12}} + k2\pi \\2x = - \frac{{7\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{24}} + k\pi \\x = - \frac{{7\pi }}{{24}} + k\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\].
• Với –π < x < π, ta có: \( - \pi < \frac{\pi }{{24}} + k\pi < \pi \).
\( \Leftrightarrow - \frac{{25\pi }}{{24}} < k\pi < \frac{{23\pi }}{{24}}\)
\( \Leftrightarrow - \frac{{25}}{{24}} < k < \frac{{23}}{{24}}\).
Mà k ∈ ℤ.
Suy ra k ∈ {–1; 0}.
Khi đó \(x = - \frac{{23\pi }}{{24}};\,x = \frac{\pi }{{24}}\).
• Với –π < x < π, ta có: \( - \pi < - \frac{{7\pi }}{{24}} + k\pi < \pi \).
\( \Leftrightarrow - \frac{{17\pi }}{{24}} < k\pi < \frac{{31\pi }}{{24}}\)
\( \Leftrightarrow - \frac{{17}}{{24}} < k < \frac{{31}}{{24}}\).
Mà k ∈ ℤ.
Suy ra k ∈ {0; 1}.
Khi đó \(x = - \frac{{7\pi }}{{24}};\,\,x = \frac{{17\pi }}{{24}}\).
Vậy tập nghiệm của phương trình đã cho là: \(S = \left\{ { - \frac{{23\pi }}{{24}};\,\,\frac{\pi }{{24}};\, - \frac{{7\pi }}{{24}};\,\,\frac{{17\pi }}{{24}}} \right\}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Câu 7:
về câu hỏi!