Câu hỏi:

17/05/2023 238

Giải phương trình \(\cos \left( {2x + \frac{\pi }{4}} \right) = \frac{1}{2},\,\, - \pi < x < \pi \).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có \(\cos \left( {2x + \frac{\pi }{4}} \right) = \frac{1}{2}\).

\[ \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\2x + \frac{\pi }{4} = - \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{{12}} + k2\pi \\2x = - \frac{{7\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{24}} + k\pi \\x = - \frac{{7\pi }}{{24}} + k\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\].

Với –π < x < π, ta có: \( - \pi < \frac{\pi }{{24}} + k\pi < \pi \).

\( \Leftrightarrow - \frac{{25\pi }}{{24}} < k\pi < \frac{{23\pi }}{{24}}\)

\( \Leftrightarrow - \frac{{25}}{{24}} < k < \frac{{23}}{{24}}\).

Mà k ℤ.

Suy ra k {–1; 0}.

Khi đó \(x = - \frac{{23\pi }}{{24}};\,x = \frac{\pi }{{24}}\).

Với –π < x < π, ta có: \( - \pi < - \frac{{7\pi }}{{24}} + k\pi < \pi \).

\( \Leftrightarrow - \frac{{17\pi }}{{24}} < k\pi < \frac{{31\pi }}{{24}}\)

\( \Leftrightarrow - \frac{{17}}{{24}} < k < \frac{{31}}{{24}}\).

Mà k ℤ.

Suy ra k {0; 1}.

Khi đó \(x = - \frac{{7\pi }}{{24}};\,\,x = \frac{{17\pi }}{{24}}\).

Vậy tập nghiệm của phương trình đã cho là: \(S = \left\{ { - \frac{{23\pi }}{{24}};\,\,\frac{\pi }{{24}};\, - \frac{{7\pi }}{{24}};\,\,\frac{{17\pi }}{{24}}} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rô-bốt có hai cái cốc loại 250 ml và 400 ml. Chỉ dùng hai cái cốc đó, làm thế nào để Rô-bốt lấy được 100 ml nước từ chậu nước?

Xem đáp án » 13/07/2024 37,606

Câu 2:

Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ .

Xem đáp án » 17/05/2023 15,620

Câu 3:

Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:

a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).

b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).

c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).

Xem đáp án » 13/07/2024 8,619

Câu 4:

Tìm m để đường thẳng y = 2x – 1 và y = 3x + m cắt nhau tại một điểm nằm trên trục hoành.

Xem đáp án » 13/07/2024 7,993

Câu 5:

Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:

a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).

b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).

c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).

d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).

Xem đáp án » 11/07/2024 6,784

Câu 6:

Cho tam giác ABC, hai điểm M, N được xác định bởi \(3\overrightarrow {MA} + 4\overrightarrow {MB} = \vec 0\); \(\overrightarrow {NB} - 3\overrightarrow {NC} = \vec 0\). Chứng minh 3 điểm M, G, N thẳng hàng, với G là trọng tâm tam giác ABC.

Xem đáp án » 12/07/2024 6,250

Câu 7:

Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.

a) Chứng minh tứ giác AEHF nội tiếp.

b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.

c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).

d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.

Xem đáp án » 13/07/2024 5,046

Bình luận


Bình luận