Câu hỏi:

13/07/2024 1,785

a) Cho biểu thức \[A = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\] với x ≥ 0. Tính giá trị của A khi x = 16.

b) Cho biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\) với x ≥ 0; x ≠ 1. Rút gọn B.

c) Tìm các số hữu tỉ x để P = A.B có giá trị nguyên.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Thế x = 16 (thỏa mãn) vào A, ta được:

\[A = \frac{{\sqrt {16} - 1}}{{\sqrt {16} + 2}} = \frac{{4 - 1}}{{4 + 2}} = \frac{3}{6} = \frac{1}{2}\].

Vậy \(A = \frac{1}{2}\) khi x = 16.

b) Với x ≥ 0; x ≠ 1 ta có:

\(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\)

\( = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} + \frac{5}{{\sqrt x - 1}} + \frac{4}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)

\( = \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 1} \right) + 5\left( {\sqrt x + 1} \right) + 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)

\( = \frac{{x + 2\sqrt x - 3 + 5\sqrt x + 5 + 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)

\( = \frac{{x + 7\sqrt x + 6}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)

\( = \frac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 6} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)

\( = \frac{{\sqrt x + 6}}{{\sqrt x - 1}}\).

c) Với x ≥ 0; x ≠ 1, ta có:

\[P = A.B = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}.\frac{{\sqrt x + 6}}{{\sqrt x - 1}} = \frac{{\sqrt x + 6}}{{\sqrt x + 2}} = \frac{{\sqrt x + 2 + 4}}{{\sqrt x + 2}} = 1 + \frac{4}{{\sqrt x + 2}}\].

Với x ≥ 0; x ≠ 1 ta có \(\sqrt x + 2 > 0 \Rightarrow \frac{4}{{\sqrt x + 2}} > 0\) \( \Rightarrow 1 + \frac{4}{{\sqrt x + 2}} > 1\) hay P > 1

Với x ≥ 0; x ≠ 1 ta có \(\sqrt x + 2 \ge 2 \Rightarrow \frac{4}{{\sqrt x + 2}} \le 2 \Rightarrow 1 + \frac{4}{{\sqrt x + 2}} \le 3\) hay P ≤ 3

Do đó 1 < P ≤ 3

Để P có giá trị nguyên thì P {2; 3}.

• Với P = 2 ta có:

\[1 + \frac{4}{{\sqrt x + 2}} = 2 \Leftrightarrow \frac{4}{{\sqrt x + 2}} = 1 \Leftrightarrow \sqrt x + 2 = 4 \Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4\left( {tm} \right)\]

• Với P = 3 ta có:

\[1 + \frac{4}{{\sqrt x + 2}} = 3 \Leftrightarrow \frac{4}{{\sqrt x + 2}} = 2 \Leftrightarrow \sqrt x + 2 = 2 \Leftrightarrow \sqrt x = 0 \Leftrightarrow x = 0\left( {tm} \right)\]

Vậy x {0; 4} thì P = A.B có giá trị nguyên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rô-bốt có hai cái cốc loại 250 ml và 400 ml. Chỉ dùng hai cái cốc đó, làm thế nào để Rô-bốt lấy được 100 ml nước từ chậu nước?

Xem đáp án » 13/07/2024 37,447

Câu 2:

Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ .

Xem đáp án » 17/05/2023 15,575

Câu 3:

Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:

a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).

b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).

c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).

Xem đáp án » 13/07/2024 8,563

Câu 4:

Tìm m để đường thẳng y = 2x – 1 và y = 3x + m cắt nhau tại một điểm nằm trên trục hoành.

Xem đáp án » 13/07/2024 7,464

Câu 5:

Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:

a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).

b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).

c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).

d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).

Xem đáp án » 11/07/2024 6,754

Câu 6:

Cho tam giác ABC, hai điểm M, N được xác định bởi \(3\overrightarrow {MA} + 4\overrightarrow {MB} = \vec 0\); \(\overrightarrow {NB} - 3\overrightarrow {NC} = \vec 0\). Chứng minh 3 điểm M, G, N thẳng hàng, với G là trọng tâm tam giác ABC.

Xem đáp án » 12/07/2024 6,158

Câu 7:

Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.

a) Chứng minh tứ giác AEHF nội tiếp.

b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.

c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).

d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.

Xem đáp án » 13/07/2024 4,629

Bình luận


Bình luận