Câu hỏi:
13/07/2024 1,116a) Cho biểu thức \[A = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\] với x ≥ 0. Tính giá trị của A khi x = 16.
b) Cho biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\) với x ≥ 0; x ≠ 1. Rút gọn B.
c) Tìm các số hữu tỉ x để P = A.B có giá trị nguyên.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Thế x = 16 (thỏa mãn) vào A, ta được:
\[A = \frac{{\sqrt {16} - 1}}{{\sqrt {16} + 2}} = \frac{{4 - 1}}{{4 + 2}} = \frac{3}{6} = \frac{1}{2}\].
Vậy \(A = \frac{1}{2}\) khi x = 16.
b) Với x ≥ 0; x ≠ 1 ta có:
\(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\)
\( = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} + \frac{5}{{\sqrt x - 1}} + \frac{4}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)
\( = \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 1} \right) + 5\left( {\sqrt x + 1} \right) + 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)
\( = \frac{{x + 2\sqrt x - 3 + 5\sqrt x + 5 + 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)
\( = \frac{{x + 7\sqrt x + 6}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)
\( = \frac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 6} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)
\( = \frac{{\sqrt x + 6}}{{\sqrt x - 1}}\).
c) Với x ≥ 0; x ≠ 1, ta có:
\[P = A.B = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}.\frac{{\sqrt x + 6}}{{\sqrt x - 1}} = \frac{{\sqrt x + 6}}{{\sqrt x + 2}} = \frac{{\sqrt x + 2 + 4}}{{\sqrt x + 2}} = 1 + \frac{4}{{\sqrt x + 2}}\].
Với x ≥ 0; x ≠ 1 ta có \(\sqrt x + 2 > 0 \Rightarrow \frac{4}{{\sqrt x + 2}} > 0\) \( \Rightarrow 1 + \frac{4}{{\sqrt x + 2}} > 1\) hay P > 1
Với x ≥ 0; x ≠ 1 ta có \(\sqrt x + 2 \ge 2 \Rightarrow \frac{4}{{\sqrt x + 2}} \le 2 \Rightarrow 1 + \frac{4}{{\sqrt x + 2}} \le 3\) hay P ≤ 3
Do đó 1 < P ≤ 3
Để P có giá trị nguyên thì P ∈ {2; 3}.
• Với P = 2 ta có:
\[1 + \frac{4}{{\sqrt x + 2}} = 2 \Leftrightarrow \frac{4}{{\sqrt x + 2}} = 1 \Leftrightarrow \sqrt x + 2 = 4 \Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4\left( {tm} \right)\]
• Với P = 3 ta có:
\[1 + \frac{4}{{\sqrt x + 2}} = 3 \Leftrightarrow \frac{4}{{\sqrt x + 2}} = 2 \Leftrightarrow \sqrt x + 2 = 2 \Leftrightarrow \sqrt x = 0 \Leftrightarrow x = 0\left( {tm} \right)\]
Vậy x ∈ {0; 4} thì P = A.B có giá trị nguyên.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Câu 7:
về câu hỏi!