Câu hỏi:
17/05/2023 401Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: C
Ta có \( - 1 \le \sin \left( {2x + \frac{\pi }{7}} \right) \le 1,\,\,\forall x \in \mathbb{R}\).
Phương trình \(\sin \left( {2x + \frac{\pi }{7}} \right) = {m^2} - 3m + 3\) vô nghiệm \( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 3m + 3 > 1\\{m^2} - 3m + 3 < - 1\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 3m + 2 > 0\\{m^2} - 3m + 4 < 0\,\,\,\left( {vo\,\,nghiem} \right)\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}m < 1\\m > 2\end{array} \right.\)
Vậy \(\left[ \begin{array}{l}m < 1\\m > 2\end{array} \right.\) thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Câu 7:
về câu hỏi!