Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có x3(x2 – 7)2 – 36x = 0.
⇔ x.[x2(x2 – 7)2 – 36] = 0.
⇔ x.[x.(x2 – 7) – 6].[x.(x2 – 7) + 6] = 0.
⇔ x.(x3 – 7x – 6)(x3 – 7x + 6) = 0.
⇔ x.[x2(x + 1) – x.(x + 1) – 6(x + 1)].[x2.(x – 1) + x.(x – 1) – 6(x – 1)] = 0.
⇔ x.(x + 1)(x2 – x – 6)(x – 1)(x2 + x – 6) = 0.
⇔ x.(x + 1)(x – 1)[x.(x – 3) + 2(x – 3)].[x.(x + 3) – 2(x + 3)] = 0.
⇔ x.(x + 1)(x – 1)(x – 3)(x + 2)(x + 3)(x – 2) = 0.
\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x + 1 = 0\\x - 1 = 0\\x - 3 = 0\\x + 2 = 0\\x + 3 = 0\\x - 2 = 0\end{array} \right.\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = 1\\x = 3\\x = - 2\\x = - 3\\x = 2\end{array} \right.\]
Vậy tập nghiệm của phương trình đã cho là: S = {0; –1; 1; 3; –2; –3; 2}.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Câu 7:
về câu hỏi!