Câu hỏi:

29/05/2023 876

Cho tam giác ABC nhọn (AB > AC), có \(\widehat B = 45^\circ \) và vẽ đường cao AH. Gọi M là trung điểm của AB. P là điểm đối xứng với H qua M.

a) Chứng minh rằng tứ giác AHBP là hình vuông.

b) Vẽ đường cao BK của tam giác ABC. Chứng minh rằng HP = 2MK.

c) Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh: ba điểm P, K, Q thẳng hàng.

d) Chứng minh các đường thẳng CD, AB và PQ đồng quy.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có P là điểm đối xứng với H qua M (giả thiết).

Suy ra M là trung điểm của PH.

Mà M cũng là trung điểm của AB (giả thiết).

Do đó tứ giác AHBP là hình bình hành          (1)

\(\Delta \)ABH có: AH \( \bot \) BH và \(\widehat {ABH} = 45^\circ \).

Suy ra \(\Delta \)ABH vuông cân tại H.

Do đó AH = BH và \(\widehat {AHB} = 90^\circ \)                    (2)

Từ (1), (2) suy ra tứ giác AHBP là hình vuông.

b) \(\Delta \)ABK vuông tại K có KM là đường trung tuyến.

Suy ra MK = \(\frac{1}{2}\)AB.

Mà AB = HP (do AHBP là hình vuông).

Do đó MK = \(\frac{1}{2}\)HP.

Vậy HP = 2MK.

c) Ta có DQ // BC (giả thiết) và DH \( \bot \) BC (do AH là đường cao của \(\Delta \)ABC).

Suy ra DQ \( \bot \) DH hay \(\widehat {HDQ} = 90^\circ \)   (3)

Chứng minh tương tự, ta được \(\widehat {HCQ} = 90^\circ \)   (4)

Mà \(\widehat {DHC} = 90^\circ \) (do AH là đường cao của \(\Delta \)ABC)   (5)

Từ (3), (4), (5) suy ra tứ giác DHCQ là hình chữ nhật.

Gọi F là giao điểm của CD và HQ.

Suy ra F là trung điểm của CD và HQ.

Do đó FD = FC = FQ = FH.

Ta có \(\Delta \)DKC vuông tại K. Suy ra KF = FD = FC = FQ = FH.

Khi đó \(\Delta \)HKQ vuông tại K.

Vì vậy HK \( \bot \) KQ.

Chứng minh tương tự, ta được HK  PK.

Ta có \(\widehat {PKH} + \widehat {HKQ} = 90^\circ + 90^\circ = 180^\circ \).

Vậy ba điểm P, K, Q thẳng hàng.

d) Gọi E là giao điểm của CD và AB.

Xét ∆ABC có BK, AH là hai đường cao cắt nhau tại D.

Suy ra D là trực tâm của \(\Delta \)ABC.

Khi đó CD  AB tại E.

\(\Delta \)BCE có \(\widehat {BCE} = 180^\circ - \widehat {BEC} - \widehat {EBC} = 180^\circ - 90^\circ - 45^\circ = 45^\circ \)

Suy ra \(\widehat {DCQ} = \widehat {HCQ} - \widehat {HCD} = 90^\circ - 45^\circ = 45^\circ \)

Khi đó CD là tia phân giác của \(\widehat {HCQ}\).

Mà tứ giác HCQD là hình chữ nhật (chứng minh trên).

Vì vậy HCQD là hình vuông.

Xét tứ giác MHFE có:

\(\widehat {HFD} = 90^\circ \) (HCQD là hình vuông); 

\(\widehat {MEF} = 90^\circ \) (FE  AB) và \(\widehat {EMH} = 90^\circ \) (AHBP là hình vuông).

Suy ra tứ giác MHFE là hình chữ nhật.

Khi đó EF = MH = \(\frac{1}{2}\)HP và EF // MH.

\(\Delta \)PHQ, có: EF // PH và F là trung điểm của HQ.

Suy ra EF đi qua trung điểm của cạnh PQ.

Mà EF = MH = \(\frac{1}{2}\)HP (chứng minh trên).

Suy ra E là trung điểm của PQ.

Khi đó ba điểm P, E, Q thẳng hàng.

Vậy các đường thẳng CD, AB và PQ đồng quy tại E.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Diện tích xung quanh căn phòng đó là:

(4,5 + 3,5) × 2 × 4 = 64 (m2)

Diện tích trần của căn phòng đó là:

4,5 × 3,5 = 15,75 (m2)

Diện tích cần quét vôi của căn phòng đó là:

64 + 15,75 – 7,8 = 71,95 (m2)

Đáp số: 71,95 m2.

Lời giải

Lời giải

Khi chuyển dấu phẩy sang bên phải 1 chữ số thì số thứ 2 gấp 10 lần số thứ nhất.
Số thứ nhất là:
503,69 : (10 + 1) = 45,79
Số thứ hai là:

503,69 – 45,79 = 457,9
Đáp số: 45,79.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP