Câu hỏi:
29/05/2023 631Cho tam giác ABC nhọn (AB > AC), có \(\widehat B = 45^\circ \) và vẽ đường cao AH. Gọi M là trung điểm của AB. P là điểm đối xứng với H qua M.
a) Chứng minh rằng tứ giác AHBP là hình vuông.
b) Vẽ đường cao BK của tam giác ABC. Chứng minh rằng HP = 2MK.
c) Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh: ba điểm P, K, Q thẳng hàng.
d) Chứng minh các đường thẳng CD, AB và PQ đồng quy.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có P là điểm đối xứng với H qua M (giả thiết).
Suy ra M là trung điểm của PH.
Mà M cũng là trung điểm của AB (giả thiết).
Do đó tứ giác AHBP là hình bình hành (1)
\(\Delta \)ABH có: AH \( \bot \) BH và \(\widehat {ABH} = 45^\circ \).
Suy ra \(\Delta \)ABH vuông cân tại H.
Do đó AH = BH và \(\widehat {AHB} = 90^\circ \) (2)
Từ (1), (2) suy ra tứ giác AHBP là hình vuông.
b) \(\Delta \)ABK vuông tại K có KM là đường trung tuyến.
Suy ra MK = \(\frac{1}{2}\)AB.
Mà AB = HP (do AHBP là hình vuông).
Do đó MK = \(\frac{1}{2}\)HP.
Vậy HP = 2MK.
c) Ta có DQ // BC (giả thiết) và DH \( \bot \) BC (do AH là đường cao của \(\Delta \)ABC).
Suy ra DQ \( \bot \) DH hay \(\widehat {HDQ} = 90^\circ \) (3)
Chứng minh tương tự, ta được \(\widehat {HCQ} = 90^\circ \) (4)
Mà \(\widehat {DHC} = 90^\circ \) (do AH là đường cao của \(\Delta \)ABC) (5)
Từ (3), (4), (5) suy ra tứ giác DHCQ là hình chữ nhật.
Gọi F là giao điểm của CD và HQ.
Suy ra F là trung điểm của CD và HQ.
Do đó FD = FC = FQ = FH.
Ta có \(\Delta \)DKC vuông tại K. Suy ra KF = FD = FC = FQ = FH.
Khi đó \(\Delta \)HKQ vuông tại K.
Vì vậy HK \( \bot \) KQ.
Chứng minh tương tự, ta được HK ⊥ PK.
Ta có \(\widehat {PKH} + \widehat {HKQ} = 90^\circ + 90^\circ = 180^\circ \).
Vậy ba điểm P, K, Q thẳng hàng.
d) Gọi E là giao điểm của CD và AB.
Xét ∆ABC có BK, AH là hai đường cao cắt nhau tại D.
Suy ra D là trực tâm của \(\Delta \)ABC.
Khi đó CD ⊥ AB tại E.
\(\Delta \)BCE có \(\widehat {BCE} = 180^\circ - \widehat {BEC} - \widehat {EBC} = 180^\circ - 90^\circ - 45^\circ = 45^\circ \)
Suy ra \(\widehat {DCQ} = \widehat {HCQ} - \widehat {HCD} = 90^\circ - 45^\circ = 45^\circ \)
Khi đó CD là tia phân giác của \(\widehat {HCQ}\).
Mà tứ giác HCQD là hình chữ nhật (chứng minh trên).
Vì vậy HCQD là hình vuông.
Xét tứ giác MHFE có:
• \(\widehat {HFD} = 90^\circ \) (HCQD là hình vuông);
• \(\widehat {MEF} = 90^\circ \) (FE ⊥ AB) và \(\widehat {EMH} = 90^\circ \) (AHBP là hình vuông).
Suy ra tứ giác MHFE là hình chữ nhật.
Khi đó EF = MH = \(\frac{1}{2}\)HP và EF // MH.
\(\Delta \)PHQ, có: EF // PH và F là trung điểm của HQ.
Suy ra EF đi qua trung điểm của cạnh PQ.
Mà EF = MH = \(\frac{1}{2}\)HP (chứng minh trên).
Suy ra E là trung điểm của PQ.
Khi đó ba điểm P, E, Q thẳng hàng.
Vậy các đường thẳng CD, AB và PQ đồng quy tại E.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng:
a) Bốn điểm B, E, D, C cùng thuộc một đường tròn.
b) DE < BC.
Câu 7:
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!