Câu hỏi:

29/05/2023 631

Cho tam giác ABC nhọn (AB > AC), có \(\widehat B = 45^\circ \) và vẽ đường cao AH. Gọi M là trung điểm của AB. P là điểm đối xứng với H qua M.

a) Chứng minh rằng tứ giác AHBP là hình vuông.

b) Vẽ đường cao BK của tam giác ABC. Chứng minh rằng HP = 2MK.

c) Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh: ba điểm P, K, Q thẳng hàng.

d) Chứng minh các đường thẳng CD, AB và PQ đồng quy.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có P là điểm đối xứng với H qua M (giả thiết).

Suy ra M là trung điểm của PH.

Mà M cũng là trung điểm của AB (giả thiết).

Do đó tứ giác AHBP là hình bình hành          (1)

\(\Delta \)ABH có: AH \( \bot \) BH và \(\widehat {ABH} = 45^\circ \).

Suy ra \(\Delta \)ABH vuông cân tại H.

Do đó AH = BH và \(\widehat {AHB} = 90^\circ \)                    (2)

Từ (1), (2) suy ra tứ giác AHBP là hình vuông.

b) \(\Delta \)ABK vuông tại K có KM là đường trung tuyến.

Suy ra MK = \(\frac{1}{2}\)AB.

Mà AB = HP (do AHBP là hình vuông).

Do đó MK = \(\frac{1}{2}\)HP.

Vậy HP = 2MK.

c) Ta có DQ // BC (giả thiết) và DH \( \bot \) BC (do AH là đường cao của \(\Delta \)ABC).

Suy ra DQ \( \bot \) DH hay \(\widehat {HDQ} = 90^\circ \)   (3)

Chứng minh tương tự, ta được \(\widehat {HCQ} = 90^\circ \)   (4)

Mà \(\widehat {DHC} = 90^\circ \) (do AH là đường cao của \(\Delta \)ABC)   (5)

Từ (3), (4), (5) suy ra tứ giác DHCQ là hình chữ nhật.

Gọi F là giao điểm của CD và HQ.

Suy ra F là trung điểm của CD và HQ.

Do đó FD = FC = FQ = FH.

Ta có \(\Delta \)DKC vuông tại K. Suy ra KF = FD = FC = FQ = FH.

Khi đó \(\Delta \)HKQ vuông tại K.

Vì vậy HK \( \bot \) KQ.

Chứng minh tương tự, ta được HK  PK.

Ta có \(\widehat {PKH} + \widehat {HKQ} = 90^\circ + 90^\circ = 180^\circ \).

Vậy ba điểm P, K, Q thẳng hàng.

d) Gọi E là giao điểm của CD và AB.

Xét ∆ABC có BK, AH là hai đường cao cắt nhau tại D.

Suy ra D là trực tâm của \(\Delta \)ABC.

Khi đó CD  AB tại E.

\(\Delta \)BCE có \(\widehat {BCE} = 180^\circ - \widehat {BEC} - \widehat {EBC} = 180^\circ - 90^\circ - 45^\circ = 45^\circ \)

Suy ra \(\widehat {DCQ} = \widehat {HCQ} - \widehat {HCD} = 90^\circ - 45^\circ = 45^\circ \)

Khi đó CD là tia phân giác của \(\widehat {HCQ}\).

Mà tứ giác HCQD là hình chữ nhật (chứng minh trên).

Vì vậy HCQD là hình vuông.

Xét tứ giác MHFE có:

\(\widehat {HFD} = 90^\circ \) (HCQD là hình vuông); 

\(\widehat {MEF} = 90^\circ \) (FE  AB) và \(\widehat {EMH} = 90^\circ \) (AHBP là hình vuông).

Suy ra tứ giác MHFE là hình chữ nhật.

Khi đó EF = MH = \(\frac{1}{2}\)HP và EF // MH.

\(\Delta \)PHQ, có: EF // PH và F là trung điểm của HQ.

Suy ra EF đi qua trung điểm của cạnh PQ.

Mà EF = MH = \(\frac{1}{2}\)HP (chứng minh trên).

Suy ra E là trung điểm của PQ.

Khi đó ba điểm P, E, Q thẳng hàng.

Vậy các đường thẳng CD, AB và PQ đồng quy tại E.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1,2 : x = 1,7 (dư 0,01)

Xem đáp án » 29/05/2023 2,387

Câu 2:

Một kho chứa 45,2 tấn gạo. Lần đầu người ta lấy lại ra \(\frac{1}{8}\) số gạo đó, lần sau lấy tiếp \(\frac{1}{5}\) số gạo còn lại. Hỏi sau hai lần lấy, trong kho còn lại bao nhiêu tấn gạo.

Xem đáp án » 29/05/2023 2,259

Câu 3:

Tổng của hai số bằng 43,75. Tìm hai số đó, biết rằng nếu số thứ nhất gấp 5 lần và giữ nguyên số thứ hai thì được tổng mới bằng 124,95.

Xem đáp án » 29/05/2023 2,209

Câu 4:

Hai số thập phân có tổng là 503,69 biết rằng nếu chuyển dấu phẩy của số thứ nhất sang bên phải một chữ số ta được số thứ hai. Tìm số thứ nhất.

Xem đáp án » 29/05/2023 2,127

Câu 5:

Một căn phòng dạng hình hộp chữ nhật có chiều dài 4,5m; chiều rộng 3,5m và chiều cao 4m. Người ta quét vôi tường xung quanh căn phòng và trần nhà. Hỏi diện tích cần quét vôi là bao nhiêu mét vuông, biết tổng diện tích các cửa là 7,8.

Xem đáp án » 29/05/2023 1,969

Câu 6:

Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng:

a) Bốn điểm B, E, D, C cùng thuộc một đường tròn.

b) DE < BC.

Xem đáp án » 29/05/2023 1,944

Câu 7:

Tính nhanh: \(B = \frac{1}{{15}} + \frac{1}{{35}} + \frac{1}{{63}} + \frac{1}{{99}} + \frac{1}{{143}}\).

Xem đáp án » 29/05/2023 1,665

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store