Câu hỏi:
13/07/2024 1,158
Từ điểm A nằm ngoài đường tròn O, vẽ các tiếp tuyến AB, AC. Gọi D là điểm đối xứng với B qua O, vẽ cát tuyến AEF, DE và DF cắt AO tại M và N. Chứng minh rằng OM = ON.
Từ điểm A nằm ngoài đường tròn O, vẽ các tiếp tuyến AB, AC. Gọi D là điểm đối xứng với B qua O, vẽ cát tuyến AEF, DE và DF cắt AO tại M và N. Chứng minh rằng OM = ON.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Dễ dàng chứng minh được AO vuông góc BC và BC vuông góc CD, do đó AO song song với CD
\( \Rightarrow \widehat {AME} = \widehat {CDE}\) (2 góc đồng vị)
Lại có \[\widehat {CDE} = \widehat {ACE}\] (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung CE của đường tròn tâm O)
\( \Rightarrow \widehat {EMA} = \widehat {ECA}\)
Do đó, Tứ giác EMCA nội tiếp
\( \Rightarrow \widehat {AEC} = \widehat {AMC} \Rightarrow \widehat {CEF} = \widehat {CMN}\) (1)
\( \Rightarrow \widehat {CAM} = \widehat {CEM}\)
Hay \(\widehat {CED} = \widehat {CFD}\) (2 góc nội tiếp cùng chắn cung CD của đtròn tâm O)
\(\widehat {CAN} = \widehat {CFN}\)
Do đó, Tứ giác CAFN nội tiếp
\( \Rightarrow \widehat {CFA} = \widehat {CNA} \Rightarrow \widehat {CFE} = \widehat {CNM}\)(2)
Từ (1) và (2) ta suy ra tam giác CEF đồng dạng với tam giác CMN (g.g)
Vì AO song song với CD (cmt) nên MN song song với CD , do đó tứ giác MNDC là hình thang.
\(\widehat {AMC} = \widehat {MCD}\) ( cùng phụ với góc CMN) (3)
tứ giác EFDC nội tiếp ( 4 điểm E,F,D,C cùng thuộc đường tròn tâm O)
( góc ở ngoài đỉnh bằng góc ở trong của đỉnh đối )
\(\widehat {AEC} = \widehat {AMC} \Rightarrow \widehat {AMC} = \widehat {CDN}\)(4)
từ (3) và (4) suy ra \(\widehat {MCD} = \widehat {CDN}\)
Do đó, Tứ giác MNDC là hình thang cân.
Vì O thuộc đường trung trực của CD (dễ chứng minh) do đó O cũng thuộc đường trung trực của MN nên OM = ON (đpcm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1. Trâu ơi ta bảo trâu này,
Trâu ra ngoài ruộng trâu cày với ta.
2. Núi cao chi lắm núi ơi,
Núi che mặt trời chẳng thấy người thương.
3. Núi cao bởi có đất bồi,
Núi chê đất thấp, núi ngồi ở đâu ?
4. Muôn dòng sông đổ biển sâu
Biển chê sông nhỏ biển đâu nước còn.
5. Khăn thương nhớ ai
Khăn rơi xuống đất
Khăn thương nhớ ai
Khăn vắt lên vai
Khăn thương nhớ ai
Khăn chùi nước mắt...
6. Tôm đi chạng vạng, cá đi rạng đông
7. Bầu ơi thương lấy bí cùng– Tuy rằng khác giống nhưng chung một giàn.
8. Núi cao chi lắm núi ơi– Núi che mặt trời chẳng thấy người thương.
9. Bác giun đào đất suốt ngày
Hôm nay chết dưới gốc cây sau nhà
10. Thân gầy guộc, lá mong manh
Mà sao nên luỹ, nên thành tre ơi?
Lời giải
Điều kiện xác định: \(\left\{ \begin{array}{l}x \ne \pm 2\\x \ne 0\end{array} \right.\)
a)
\(\begin{array}{l}P = \left( {\frac{{{x^2}}}{{{x^3} - 4x}} + \frac{6}{{6 - 3x}} + \frac{1}{{x + 2}}} \right):\left( {x - 2 + \frac{{10 - {x^2}}}{{x + 2}}} \right)\\ = \left( {\frac{{{x^2}}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{6}{{3\left( {x - 2} \right)}} + \frac{1}{{x + 2}}} \right):\frac{{{x^2} - 4 + 10 - {x^2}}}{{x - 2}}\\ = \left( {\frac{{{x^2}}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{2x\left( {x + 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{x\left( {x - 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}}} \right):\frac{6}{{x - 2}}\\ = \frac{{{x^2} - 2{x^2} - 4x + {x^2} - 2x}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}}:\frac{6}{{x - 2}}\\ = \frac{{ - 6x}}{{6x\left( {x + 2} \right)}} = \frac{{ - 1}}{{x + 2}}\end{array}\)
b)
Khi \(\left| x \right| = \frac{3}{4}\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{3}{4}\\x = - \frac{3}{4}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}P = - \frac{4}{{11}}\\P = - \frac{4}{5}\end{array} \right.\)
c)
Để P = 7
\(\begin{array}{l} \Leftrightarrow \frac{{ - 1}}{{x + 2}} = 7\\ \Leftrightarrow 7\left( {x + 2} \right) = - 1\\ \Leftrightarrow 7x + 14 = - 1\\ \Leftrightarrow 7x = - 15\\ \Leftrightarrow x = \frac{{ - 15}}{7}\end{array}\)
d)
Để P ∈ ℤ
⇔ 1 ⋮ x + 2
⇔ x + 2 ∈ Ư(1) = {±1}
⇔ x ∈ {–3; –1}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.