Câu hỏi:
13/07/2024 226Trên đường tròn (O) đường kính AB, lấy điểm M (khác A và B). Vẽ tiếp tuyến của (O) tại A. Đường thẳng BM cắt tiếp tuyến đó tại C.
Chứng minh rằng ta luôn có: MA2 = MB . MC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(\widehat {AMB}\) là góc nội tiếp chắn nửa đường tròn \( \Rightarrow \widehat {AMB} = 90^\circ \)
AC là tiếp tuyến của đường tròn tại A
Do đó, AC vuông góc với AO
\( \Rightarrow AC \bot AO\)
Do đó, \(\widehat {CAB} = 90^\circ \)
Do đó, tam giác ABC vuông tại A có đường cao AM
\( \Rightarrow A{M^2} = MB.MC\) (Hệ thức về cạnh và đường cao trong tam giác vuông).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho biểu thức P = \(\left( {\frac{{{x^2}}}{{{x^3} - 4x}} + \frac{6}{{6 - 3x}} + \frac{1}{{x + 2}}} \right):\left( {x - 2 + \frac{{10 - {x^2}}}{{x + 2}}} \right)\).
a) Rút gọn P.
b) Tính giá trị của biểu thức P khi \(\left| x \right| = \frac{3}{4}\).
c) Với giá trị nào của x thì P = 7.
d) Tìm giá trị nguyên của x để P có giá trị nguyên.
Câu 3:
8 người sơn được 3 cái nhà trong 6 giờ. Hỏi với 12 người sẽ sơn được bao nhiêu cái nhà trong 12 giờ ?
Câu 5:
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Gọi M và N lần lượt là trung điểm của OB và CD.
a) CMR: \(\widehat {AMN} = 90^\circ \). Từ đó suy ra bốn điểm A, M, N, D cùng thuộc một đường tròn.
b) So sánh AN và MD.
Câu 6:
Tổng của hai số lẻ bằng 64. Tìm 2 số đó,biết rằng giữa chúng có 5 số chẵn liên tiếp.
Câu 7:
Lãi suất tiết kiệm có kì hạn của một ngân hàng là 0,6%. Bác Minh gửi 60000000 đồng tiền tiết kiệm, hỏi sau một tháng bác Minh có bao nhiêu tiền cả tiền vốn và lãi ?
về câu hỏi!