Câu hỏi:
13/07/2024 214Nếu x, y, z > 0 thỏa mãn: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4\) thì
\(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le 1\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: x, y, z > 0
Áp dụng BĐT Cô si ta có:
\(\left( {x + y} \right) \ge 2\sqrt {xy} \) và \(\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 2\sqrt {\frac{1}{{xy}}} \)
\( \Rightarrow \left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 2\sqrt {xy} .2\sqrt {\frac{1}{{xy}}} = 4\)
\( \Leftrightarrow \frac{1}{x} + \frac{1}{y} \ge \frac{4}{{x + y}} \Leftrightarrow \frac{1}{{x + y}} \le 4\left( {\frac{1}{x} + \frac{1}{y}} \right)\) (*)
Áp dụng (*) ta có:
\(\frac{1}{{2x + y + z}} = \frac{1}{{x + y + x + z}} = \frac{1}{{\left( {x + y} \right) + \left( {x + z} \right)}} \le \frac{1}{4}\left( {\frac{1}{{x + y}} + \frac{1}{{x + z}}} \right) \le \frac{1}{{16}}\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{x} + \frac{1}{z}} \right)\left( 1 \right)\)
\(\frac{1}{{x + 2y + z}} = \frac{1}{{x + y + y + z}} = \frac{1}{{\left( {x + y} \right) + \left( {y + z} \right)}} \le \frac{1}{4}\left( {\frac{1}{{x + y}} + \frac{1}{{y + z}}} \right) \le \frac{1}{{16}}\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{y} + \frac{1}{z}} \right)\left( 2 \right)\)
\(\frac{1}{{x + y + 2z}} = \frac{1}{{x + z + y + z}} = \frac{1}{{\left( {x + z} \right) + \left( {y + z} \right)}} \le \frac{1}{4}\left( {\frac{1}{{x + z}} + \frac{1}{{y + z}}} \right) \le \frac{1}{{16}}\left( {\frac{1}{x} + \frac{1}{z} + \frac{1}{y} + \frac{1}{z}} \right)\left( 3 \right)\)
Cộng hai vế của (1) , (2), (3) ta có:
\(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le 1\) (đcpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho biểu thức P = \(\left( {\frac{{{x^2}}}{{{x^3} - 4x}} + \frac{6}{{6 - 3x}} + \frac{1}{{x + 2}}} \right):\left( {x - 2 + \frac{{10 - {x^2}}}{{x + 2}}} \right)\).
a) Rút gọn P.
b) Tính giá trị của biểu thức P khi \(\left| x \right| = \frac{3}{4}\).
c) Với giá trị nào của x thì P = 7.
d) Tìm giá trị nguyên của x để P có giá trị nguyên.
Câu 3:
8 người sơn được 3 cái nhà trong 6 giờ. Hỏi với 12 người sẽ sơn được bao nhiêu cái nhà trong 12 giờ ?
Câu 5:
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Gọi M và N lần lượt là trung điểm của OB và CD.
a) CMR: \(\widehat {AMN} = 90^\circ \). Từ đó suy ra bốn điểm A, M, N, D cùng thuộc một đường tròn.
b) So sánh AN và MD.
Câu 6:
Tổng của hai số lẻ bằng 64. Tìm 2 số đó,biết rằng giữa chúng có 5 số chẵn liên tiếp.
Câu 7:
Lãi suất tiết kiệm có kì hạn của một ngân hàng là 0,6%. Bác Minh gửi 60000000 đồng tiền tiết kiệm, hỏi sau một tháng bác Minh có bao nhiêu tiền cả tiền vốn và lãi ?
về câu hỏi!