Câu hỏi:
12/07/2024 7,496Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Diện tích một mặt của hình lập phương là:
54 : 6 = 9 (cm2)
Vì 9 = 3 × 3 nên cạnh hình lập phương là 3 cm
Thể tích của hình lập phương là :
3 × 3 × 3 = 27 (cm3)
Vậy thể tích hình lập phương đó là 27 cm3.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số phần thưởng có thể chia được là x (phần thưởng) (x ∈ ℕ*)
Vì chia 128 quyển vở, 48 bút chì, 192 tập giấy thành 1 số phần thưởng như nhau
Nên x là ƯC(128, 48, 192)
Nhưng để x là nhiều nhất thì x = ƯCLN(128, 48, 192)
Ta có: 128 = 27; 48 = 24.3; 192 = 26.3
Suy ra ƯCLN(128, 48, 192) = 24 = 16
Do đó x = 16
Vậy chia được là 16 phần thưởng
Khi đó, mỗi phần thưởng có 128 : 16 = 8 (quyển vở); 48 : 16 = 3 (bút chì) và 192 : 16 = 12 (tập giấy).
Lời giải
Ta có 3x2 + 3y2 + 4xy + 2x – 2y + 2 = 0
⇔ (2x2 + 4xy + 2y2) + (x2 + 2x + 1) + (y2 – 2y + 1) = 0
⇔ 2(x + y)2 + (x + 1)2 + (y – 1)2 = 0
Vì (x + y)2 ≥ 0 với mọi x, y
(x + 1)2 ≥ 0 với mọi x
(y – 1)2 ≥ 0 với mọi y
Suy ra 2(x + y)2 + (x + 1)2 + (y – 1)2 ≥ 0 với mọi x, y
Do đó phương trình có nghiệm khi \(\left\{ \begin{array}{l}x + y = 0\\x + 1 = 0\\y - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 1\end{array} \right.\)
Thay x = – 1, y = 1 vào M ta được
M = (x + y)2010 + (x + 2)2011 + (y – 1)2012
M = [(– 1) + 1]2010 + [(– 1) + 2]2011 + (1 – 1)2012
M = 0 + 1 + 0 = 1
Vậy M = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.