Câu hỏi:

11/07/2024 1,797

Cho ∆ABC có E là trung điểm của AC. Qua E kẻ ED // AB (D BC), EF // BC (F AB).

a) Chứng minh tứ giác BDEF là hình bình hành và D là trung điểm của đoạn thẳng BC.

b) Gọi H là điểm đối xứng của D qua F. CHứng minh rằng HB // AD.

c) Gọi I là trung điểm của HB, K là giao điểm của AD và EF. Chứng minh rằng I, K, E thẳng hàng.

d) ∆ABC cần thêm điều kiện gì để HF = \[\frac{{AB}}{2}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ∆ABC có E là trung điểm của AC. Qua E kẻ ED // AB (D thuộc BC), EF // BC (F (ảnh 1)

a)

Xét tứ giác BDEF có:

EF // BD (vì EF // BC)

ED // FB (vì ED // AB)

Do đó tứ giác BDEF là hình bình hành (tứ giác có cặp cạnh đối song song)

Tam giác ABC có:

EA = EC (gt)

ED // AB (gt)

Do đó DB = DC hay D là trung điểm của đoạn thẳng BC.

b)

Vì H đối xứng D qua F

F là trung điểm của HD (1)

Vì E là trung điểm của AC và EF // BC

F là trung điểm của AB (2)

Từ (1) và (2) ta có tứ giác HABD có hai đường chéo cắt nhau tại trung điểm mỗi đường.

AHBD là hình hình hành

HB // AD.

c)

Xét tam giác ∆HBD có:

I là trung điểm của HB

F trung điểm của HD

IF // BD (3)

Mà FE // BD (4)

I, F, E thẳng hàng.

I, K, E thẳng hàng.

d) Để HF = \(\frac{{AB}}{2}\) thì \(\frac{{HD}}{2} = \frac{{AB}}{2}\)

HD = AB

Hình bình hành AHBD có HD = AB

AHBD là hình chữ nhật

AD vuông góc với BC

Xét tam giác ABC có AD vừa là đường cao vừa là đường trung tuyến (D là trung điểm của BC)

ΔABC cân tại A.

Vậy ∆ABC cân tại A thì HF = \(\frac{{AB}}{2}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng: tích của 3 số tự nhiên liên tiếp chia hết cho 3.

Xem đáp án » 11/07/2024 22,525

Câu 2:

Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Trên Oz lấy điểm I. Chứng minh:

a) Tam giác ∆AOI = tam giác ∆BOI.

b) AB vuông góc với OI.

Xem đáp án » 11/07/2024 15,581

Câu 3:

 Cho \[A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + .... + \frac{1}{{99.100}}\]. Chứng minh rằng: \(\frac{7}{{12}}\) < A < \(\frac{5}{6}\).

Xem đáp án » 11/07/2024 14,006

Câu 4:

0 có chia hết cho 3 không?

Xem đáp án » 11/07/2024 10,946

Câu 5:

Một bếp ăn dự trữ gạo cho 80 người ăn trong 30 ngày. Nay có thêm 40 người nữa mới đến. Hỏi số gạo đó đủ ăn trong bao nhiêu ngày?

Xem đáp án » 11/07/2024 5,305

Câu 6:

Lớp 10A có 45 học sinh trong kì thi học kì 1 có 25 em đạt loại giỏi môn toán, 20 em đạt loại giỏi môn lý, 18 em đạt loại giỏi môn hoá. 6 em ko đạt loại giỏi bất kì môn nào, 5 em đạt loại giỏi 3 môn. Hỏi số học sinh chỉ đạt giỏi một môn và số học sinh giỏi hai môn?

Xem đáp án » 11/07/2024 4,075

Câu 7:

Một bếp ăn dự trữ gạo đủ cho 120 người ăn trong 18 ngày. Nay có 80 người được chuyển đi nơi khác. Hỏi số gạo đó đủ cho những người còn lại ăn trong bao nhiêu ngày? (Mức ăn mỗi người như nhau).

Xem đáp án » 11/07/2024 3,937
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua