Câu hỏi:

11/07/2024 1,880

Cho ∆ABC có E là trung điểm của AC. Qua E kẻ ED // AB (D BC), EF // BC (F AB).

a) Chứng minh tứ giác BDEF là hình bình hành và D là trung điểm của đoạn thẳng BC.

b) Gọi H là điểm đối xứng của D qua F. CHứng minh rằng HB // AD.

c) Gọi I là trung điểm của HB, K là giao điểm của AD và EF. Chứng minh rằng I, K, E thẳng hàng.

d) ∆ABC cần thêm điều kiện gì để HF = \[\frac{{AB}}{2}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ∆ABC có E là trung điểm của AC. Qua E kẻ ED // AB (D thuộc BC), EF // BC (F (ảnh 1)

a)

Xét tứ giác BDEF có:

EF // BD (vì EF // BC)

ED // FB (vì ED // AB)

Do đó tứ giác BDEF là hình bình hành (tứ giác có cặp cạnh đối song song)

Tam giác ABC có:

EA = EC (gt)

ED // AB (gt)

Do đó DB = DC hay D là trung điểm của đoạn thẳng BC.

b)

Vì H đối xứng D qua F

F là trung điểm của HD (1)

Vì E là trung điểm của AC và EF // BC

F là trung điểm của AB (2)

Từ (1) và (2) ta có tứ giác HABD có hai đường chéo cắt nhau tại trung điểm mỗi đường.

AHBD là hình hình hành

HB // AD.

c)

Xét tam giác ∆HBD có:

I là trung điểm của HB

F trung điểm của HD

IF // BD (3)

Mà FE // BD (4)

I, F, E thẳng hàng.

I, K, E thẳng hàng.

d) Để HF = \(\frac{{AB}}{2}\) thì \(\frac{{HD}}{2} = \frac{{AB}}{2}\)

HD = AB

Hình bình hành AHBD có HD = AB

AHBD là hình chữ nhật

AD vuông góc với BC

Xét tam giác ABC có AD vừa là đường cao vừa là đường trung tuyến (D là trung điểm của BC)

ΔABC cân tại A.

Vậy ∆ABC cân tại A thì HF = \(\frac{{AB}}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi tích của 3 số liên tiếp là:

A= a ∙ (a + 1) ∙ (a + 2) (a thuộc ℕ*)

Giả sử a A 3

Nếu a ko chia hết cho 3 thì có 2 khả năng: 3n + 1 hoặc 3n + 2

Với a = 3n + 1

a + 2 = (3n + 1) + 2 = 3n + 3

A 3 (1)

Với a = 3n + 2 

a +1 = 3n + 2 + 1 = 3n + 3  3

A chia hết 3 (2)

Vậy với mọi A thuộc N thì A  3 (điều đã được chứng minh).

Lời giải

Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm B (ảnh 1)

a)

Vì Oz là phân giác của xOy nên \[xOz = yOz = \frac{{xOy}}{2}\]

Xét Δ AOI và Δ BOI có:

OA = OB (gt)

AOI = BOI (cmt)

OI là cạnh chung

Do đó, Δ AOI = Δ BOI (c.g.c) (đpcm)

b)

Xét Δ AOH và Δ BOH có:

OA = OB (gt)

AOH = BOH (câu a)

HO là cạnh chung.

Do đó, Δ AOH = Δ BOH (c.g.c)

AHO = BHO (2 góc tương ứng)

Mà AHO + BHO = 180° (kề bù) nên AHO = BHO = 90°

 AB OI (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP