Câu hỏi:

11/07/2024 4,257

Lớp 10A có 45 học sinh trong kì thi học kì 1 có 25 em đạt loại giỏi môn toán, 20 em đạt loại giỏi môn lý, 18 em đạt loại giỏi môn hoá. 6 em ko đạt loại giỏi bất kì môn nào, 5 em đạt loại giỏi 3 môn. Hỏi số học sinh chỉ đạt giỏi một môn và số học sinh giỏi hai môn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tổng số bài kiểm tra đạt loại giỏi là:

25 + 20 + 18 = 63 (bài kiểm tra)

Trong đó có 5 học sinh giỏi cả 3 môn, vậy số học sinh đạt loại giỏi ít hơn 3 môn là:

45 − 5 = 40 (học sinh)

Số bài đạt điểm giỏi cho 40 học sinh đạt loại giỏi ít hơn 3 môn là:

          63 – 5 × 3 = 48 (bài kiểm tra)

Mặt khác có 6 học sinh ko đạt giỏi môn nào nên 48 điểm giỏi nằm trong:

40 – 6 = 34 (học sinh)

Hay nói cách khác trong 34 học sinh sẽ có x học sinh giỏi 1 môn và y học sinh giỏi 2 môn và từ đó ta có phương trình x + y = 34 và x + 2y = 48 (x, y > 0)

Giải hệ phương trình này ta được x = 20, y = 14.

Vậy lớp có 20 học sinh giỏi một môn và 14 học sinh giỏi hai môn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi tích của 3 số liên tiếp là:

A= a ∙ (a + 1) ∙ (a + 2) (a thuộc ℕ*)

Giả sử a A 3

Nếu a ko chia hết cho 3 thì có 2 khả năng: 3n + 1 hoặc 3n + 2

Với a = 3n + 1

a + 2 = (3n + 1) + 2 = 3n + 3

A 3 (1)

Với a = 3n + 2 

a +1 = 3n + 2 + 1 = 3n + 3  3

A chia hết 3 (2)

Vậy với mọi A thuộc N thì A  3 (điều đã được chứng minh).

Lời giải

Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm B (ảnh 1)

a)

Vì Oz là phân giác của xOy nên \[xOz = yOz = \frac{{xOy}}{2}\]

Xét Δ AOI và Δ BOI có:

OA = OB (gt)

AOI = BOI (cmt)

OI là cạnh chung

Do đó, Δ AOI = Δ BOI (c.g.c) (đpcm)

b)

Xét Δ AOH và Δ BOH có:

OA = OB (gt)

AOH = BOH (câu a)

HO là cạnh chung.

Do đó, Δ AOH = Δ BOH (c.g.c)

AHO = BHO (2 góc tương ứng)

Mà AHO + BHO = 180° (kề bù) nên AHO = BHO = 90°

 AB OI (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP