Câu hỏi:

19/08/2025 611 Lưu

Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB.

a, Chứng minh: Tứ giác AMCN là hình bình hành

b, Tứ giác AECF là hình gì?

c, Chứng minh: E, F đối xứng qua O

d, Chứng minh: EC = 2DE.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm của (ảnh 1)

a,

Ta có ABCD là hình bình hành AC ∩ BD tại trung điểm mỗi đường

Mà AC ∩ BD = 0 O là trung điểm AC, DB

Lại có M, N là trung điểm OD, OB

OM = \(\frac{1}{2}\) OD = \(\frac{1}{2}\) OB = ON

O là trung điểm MN

Do O là trung điểm AC, MN

AMCN là hình bình hành (đpcm).

b,

Ta có AMCN là hình bình hành.

AM // CN

AE // CF

Mà AB // CD AF // CE

AECF là hình bình hành.

c,

Ta có AECF là hình bình hành.

AC ∩ EF tại trung điểm mỗi đường

Mà O là trung điểm AC

O là trung điểm EF

E, F đối xứng nhau qua O (đpcm).

d,

Gọi G là trung điểm CE

Vì O là trung điểm AC OG là đường trung bình ∆ACE

OG // AE

ME // OG

Mà M là trung điểm DO ME là đường trung bình ∆ODG

E là trung điểm DG

DE = EG = GC

CE = CG + GE = DE + DE = 2DE (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi tích của 3 số liên tiếp là:

A= a ∙ (a + 1) ∙ (a + 2) (a thuộc ℕ*)

Giả sử a A 3

Nếu a ko chia hết cho 3 thì có 2 khả năng: 3n + 1 hoặc 3n + 2

Với a = 3n + 1

a + 2 = (3n + 1) + 2 = 3n + 3

A 3 (1)

Với a = 3n + 2 

a +1 = 3n + 2 + 1 = 3n + 3  3

A chia hết 3 (2)

Vậy với mọi A thuộc N thì A  3 (điều đã được chứng minh).

Lời giải

Ta có \[A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + .... + \frac{1}{{99.100}}\]

\[\begin{array}{l}A = \left( {\frac{1}{{1.2}} + \frac{1}{{3.4}}} \right) + \left( {\frac{1}{{5.6}} + ... + \frac{1}{{99.100}}} \right)\\A = \frac{7}{{12}} + \left( {\frac{1}{{5.6}} + ... + \frac{1}{{99.100}}} \right) > \frac{7}{{12}}\end{array}\]

(vì \[\frac{1}{{5.6}} + ... + \frac{1}{{99.100}} > 0\])

Ta có:

\[\begin{array}{l}A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + ... + \frac{1}{{99.100}}\\ \Rightarrow A = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + ... + \frac{1}{{99}} - \frac{1}{{100}}\end{array}\]

\[ \Rightarrow A = \left( {\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + ... + \frac{1}{{99}}} \right) - \left( {\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{{100}}} \right)\]

\[ \Rightarrow A = \left( {\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + ... + \frac{1}{{99}} + \frac{1}{{100}}} \right) - 2\left( {\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{{100}}} \right)\]

\[\begin{array}{l} \Rightarrow A = \left( {\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + ... + \frac{1}{{99}} + \frac{1}{{100}}} \right) - \left( {1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{50}}} \right)\\ \Rightarrow A = \frac{1}{{51}} + \frac{1}{{52}} + \frac{1}{{53}} + ... + \frac{1}{{100}}\end{array}\]

Tổng A có (100 – 51) : 1 + 1 = 50 (số hạng)

Như vậy, ta nhóm 10 số vào 1 nhóm được:

\[\begin{array}{l}A = \left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right) + \left( {\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}}} \right)\\ + \left( {\frac{1}{{71}} + \frac{1}{{72}} + ... + \frac{1}{{80}}} \right) + \left( {\frac{1}{{81}} + \frac{1}{{82}} + ... + \frac{1}{{90}}} \right)\\ + \left( {\frac{1}{{91}} + \frac{1}{{92}} + ... + \frac{1}{{100}}} \right)\end{array}\]

Ta thấy:

\[\begin{array}{l}\left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right) < 10\cdot \frac{1}{{50}} = \frac{1}{5}\\\left( {\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}}} \right) < 10\cdot \frac{1}{{60}} = \frac{1}{6}\\\left( {\frac{1}{{71}} + \frac{1}{{72}} + ... + \frac{1}{{80}}} \right) < 10\cdot \frac{1}{{80}} = \frac{1}{7}\\\left( {\frac{1}{{81}} + \frac{1}{{82}} + ... + \frac{1}{{90}}} \right) < 10\cdot \frac{1}{{90}} = \frac{1}{8}\end{array}\]

\[\begin{array}{l}\left( {\frac{1}{{91}} + \frac{1}{{92}} + ... + \frac{1}{{100}}} \right) < \frac{1}{9}\\ \Rightarrow \left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right) + \left( {\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}}} \right) + \left( {\frac{1}{{71}} + \frac{1}{{72}} + ... + \frac{1}{{80}}} \right)\\ + \left( {\frac{1}{{81}} + \frac{1}{{82}} + ... + \frac{1}{{90}}} \right) + \left( {\frac{1}{{91}} + \frac{1}{{92}} + ... + \frac{1}{{100}}} \right) < \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} < \frac{5}{6}\\ \Rightarrow A < \frac{5}{6}\end{array}\]

Vậy \(\frac{7}{{12}} < A < \frac{5}{6}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP