Câu hỏi:
06/06/2023 252Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB.
a, Chứng minh: Tứ giác AMCN là hình bình hành
b, Tứ giác AECF là hình gì?
c, Chứng minh: E, F đối xứng qua O
d, Chứng minh: EC = 2DE.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a,
Ta có ABCD là hình bình hành ⇒ AC ∩ BD tại trung điểm mỗi đường
Mà AC ∩ BD = 0 ⇒ O là trung điểm AC, DB
Lại có M, N là trung điểm OD, OB
⇒ OM = \(\frac{1}{2}\) OD = \(\frac{1}{2}\) OB = ON
⇒ O là trung điểm MN
Do O là trung điểm AC, MN
⇒ AMCN là hình bình hành (đpcm).
b,
Ta có AMCN là hình bình hành.
⇒ AM // CN
⇒ AE // CF
Mà AB // CD ⇒ AF // CE
⇒ AECF là hình bình hành.
c,
Ta có AECF là hình bình hành.
⇒ AC ∩ EF tại trung điểm mỗi đường
Mà O là trung điểm AC
⇒ O là trung điểm EF
⇒ E, F đối xứng nhau qua O (đpcm).
d,
Gọi G là trung điểm CE
Vì O là trung điểm AC ⇒ OG là đường trung bình ∆ACE
⇒ OG // AE
⇒ ME // OG
Mà M là trung điểm DO ⇒ ME là đường trung bình ∆ODG
⇒ E là trung điểm DG
⇒ DE = EG = GC
⇒ CE = CG + GE = DE + DE = 2DE (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho \[A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + .... + \frac{1}{{99.100}}\]. Chứng minh rằng: \(\frac{7}{{12}}\) < A < \(\frac{5}{6}\).
Câu 4:
Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Trên Oz lấy điểm I. Chứng minh:
a) Tam giác ∆AOI = tam giác ∆BOI.
b) AB vuông góc với OI.
Câu 5:
Một bếp ăn dự trữ gạo cho 80 người ăn trong 30 ngày. Nay có thêm 40 người nữa mới đến. Hỏi số gạo đó đủ ăn trong bao nhiêu ngày?
Câu 6:
Một bếp ăn dự trữ gạo đủ cho 120 người ăn trong 18 ngày. Nay có 80 người được chuyển đi nơi khác. Hỏi số gạo đó đủ cho những người còn lại ăn trong bao nhiêu ngày? (Mức ăn mỗi người như nhau).
về câu hỏi!