Câu hỏi:
11/07/2024 760Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho BD = CE.
Chứng minh ∆ADE cân.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do ∆ABC cân tại A nên \[\widehat {ABC} = \widehat {ACB}\].
Suy ra \[\widehat {ABD} = \widehat {ACE}\](cùng bù với gióc \[\widehat {ABC},\widehat {ACB}\]).
Xét ∆ABD và ∆ACE có:
AB = AC (do tam giác ABC cân tại A)
\[\widehat {ABD} = \widehat {ACE}\] (chứng minh trên),
Mà BD = CE (theo giả thiết).
Suy ra ∆ABD = ∆ACE (c.g.c),
Do đó AD = AE (hai cạnh tương ứng),
Suy ra tam giác ADE cân tại A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho \[A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + .... + \frac{1}{{99.100}}\]. Chứng minh rằng: \(\frac{7}{{12}}\) < A < \(\frac{5}{6}\).
Câu 4:
Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Trên Oz lấy điểm I. Chứng minh:
a) Tam giác ∆AOI = tam giác ∆BOI.
b) AB vuông góc với OI.
Câu 5:
Một bếp ăn dự trữ gạo cho 80 người ăn trong 30 ngày. Nay có thêm 40 người nữa mới đến. Hỏi số gạo đó đủ ăn trong bao nhiêu ngày?
Câu 6:
Một bếp ăn dự trữ gạo đủ cho 120 người ăn trong 18 ngày. Nay có 80 người được chuyển đi nơi khác. Hỏi số gạo đó đủ cho những người còn lại ăn trong bao nhiêu ngày? (Mức ăn mỗi người như nhau).
về câu hỏi!