Cho phân số \(\frac{{13}}{{25}}\). Hãy tìm một số tự nhiên sao cho nếu đem tử số cộng số đó và mẫu số trừ đi số đó ta được phân số mới có giá trị bằng \(\frac{9}{{10}}\).
Cho phân số \(\frac{{13}}{{25}}\). Hãy tìm một số tự nhiên sao cho nếu đem tử số cộng số đó và mẫu số trừ đi số đó ta được phân số mới có giá trị bằng \(\frac{9}{{10}}\).
Quảng cáo
Trả lời:

Tổng của tử số và mẫu số của phân số \(\frac{{13}}{{25}}\) là:
13 + 25 = 38
Khi cộng tử của phân số \(\frac{{13}}{{25}}\) và mẫu số của phân số \(\frac{{13}}{{25}}\) với cùng 1 số thì tổng của tử số với mẫu số của phân số mới không thay đổi và bằng 38.
Chia tử của phân số mới thành 9 phần thì mẫu của phân số mới là 10 phần.
Tổng số phần bằng nhau là:
9 + 10 = 19 (phần)
Giá trị 1 phần là:
38 : 19 = 2
Tử của phân số mới là:
2 × 9 = 18
Số tự nhiên cần tìm là:
18 – 13 = 5
Đáp số: 5.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi tích của 3 số liên tiếp là:
A= a ∙ (a + 1) ∙ (a + 2) (a thuộc ℕ*)
Giả sử a ⋮ 3 ⇒ A ⋮ 3
Nếu a ko chia hết cho 3 thì có 2 khả năng: 3n + 1 hoặc 3n + 2
Với a = 3n + 1
⇒ a + 2 = (3n + 1) + 2 = 3n + 3 ⋮ 3
⇒ A ⋮ 3 (1)
Với a = 3n + 2
⇒ a +1 = 3n + 2 + 1 = 3n + 3 ⋮ 3
⇒ A chia hết 3 (2)
Vậy với mọi A thuộc N thì A ⋮ 3 (điều đã được chứng minh).
Lời giải
Ta có \[A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + .... + \frac{1}{{99.100}}\]
\[\begin{array}{l}A = \left( {\frac{1}{{1.2}} + \frac{1}{{3.4}}} \right) + \left( {\frac{1}{{5.6}} + ... + \frac{1}{{99.100}}} \right)\\A = \frac{7}{{12}} + \left( {\frac{1}{{5.6}} + ... + \frac{1}{{99.100}}} \right) > \frac{7}{{12}}\end{array}\]
(vì \[\frac{1}{{5.6}} + ... + \frac{1}{{99.100}} > 0\])
Ta có:
\[\begin{array}{l}A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + ... + \frac{1}{{99.100}}\\ \Rightarrow A = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + ... + \frac{1}{{99}} - \frac{1}{{100}}\end{array}\]
\[ \Rightarrow A = \left( {\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + ... + \frac{1}{{99}}} \right) - \left( {\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{{100}}} \right)\]
\[ \Rightarrow A = \left( {\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + ... + \frac{1}{{99}} + \frac{1}{{100}}} \right) - 2\left( {\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{{100}}} \right)\]
\[\begin{array}{l} \Rightarrow A = \left( {\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + ... + \frac{1}{{99}} + \frac{1}{{100}}} \right) - \left( {1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{50}}} \right)\\ \Rightarrow A = \frac{1}{{51}} + \frac{1}{{52}} + \frac{1}{{53}} + ... + \frac{1}{{100}}\end{array}\]
Tổng A có (100 – 51) : 1 + 1 = 50 (số hạng)
Như vậy, ta nhóm 10 số vào 1 nhóm được:
\[\begin{array}{l}A = \left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right) + \left( {\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}}} \right)\\ + \left( {\frac{1}{{71}} + \frac{1}{{72}} + ... + \frac{1}{{80}}} \right) + \left( {\frac{1}{{81}} + \frac{1}{{82}} + ... + \frac{1}{{90}}} \right)\\ + \left( {\frac{1}{{91}} + \frac{1}{{92}} + ... + \frac{1}{{100}}} \right)\end{array}\]
Ta thấy:
\[\begin{array}{l}\left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right) < 10\cdot \frac{1}{{50}} = \frac{1}{5}\\\left( {\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}}} \right) < 10\cdot \frac{1}{{60}} = \frac{1}{6}\\\left( {\frac{1}{{71}} + \frac{1}{{72}} + ... + \frac{1}{{80}}} \right) < 10\cdot \frac{1}{{80}} = \frac{1}{7}\\\left( {\frac{1}{{81}} + \frac{1}{{82}} + ... + \frac{1}{{90}}} \right) < 10\cdot \frac{1}{{90}} = \frac{1}{8}\end{array}\]
\[\begin{array}{l}\left( {\frac{1}{{91}} + \frac{1}{{92}} + ... + \frac{1}{{100}}} \right) < \frac{1}{9}\\ \Rightarrow \left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right) + \left( {\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}}} \right) + \left( {\frac{1}{{71}} + \frac{1}{{72}} + ... + \frac{1}{{80}}} \right)\\ + \left( {\frac{1}{{81}} + \frac{1}{{82}} + ... + \frac{1}{{90}}} \right) + \left( {\frac{1}{{91}} + \frac{1}{{92}} + ... + \frac{1}{{100}}} \right) < \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} < \frac{5}{6}\\ \Rightarrow A < \frac{5}{6}\end{array}\]
Vậy \(\frac{7}{{12}} < A < \frac{5}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.