Câu hỏi:

11/07/2024 1,407

Cho \[A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + .... + \frac{1}{{99.100}}\]

                       \(B = \frac{1}{{51.100}} + \frac{1}{{52.99}} + .... + \frac{1}{{99.52}} + \frac{1}{{100.51}}\)

     Tính: \(\frac{A}{B}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\begin{array}{l}A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + .... + \frac{1}{{99.100}}\\ = \frac{{2 - 1}}{{1.2}} + \frac{{4 - 3}}{{3.4}} + \frac{{6 - 5}}{{5.6}} + .... + \frac{{100 - 99}}{{99.100}}\\ = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + .... + \frac{1}{{99}} - \frac{1}{{100}}\\ = \left( {1 + \frac{1}{3} + \frac{1}{5} + .... + \frac{1}{{99}}} \right) - \left( {\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + .... + \frac{1}{{100}}} \right)\\ = \left( {1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + .... + \frac{1}{{100}}} \right) - 2\left( {1 + \frac{1}{2} + \frac{1}{3} + .... + \frac{1}{{50}}} \right)\\ = \frac{1}{{51}} + \frac{1}{{52}} + .... + \frac{1}{{100}}\end{array}\]

Mặt khác:

\[\begin{array}{l}151B = \frac{{51 + 100}}{{51.100}} + \frac{{52 + 99}}{{52.99}} + .... + \frac{{99 + 52}}{{99.52}} + \frac{{100 + 51}}{{100.51}}\\ = \frac{1}{{100}} + \frac{1}{{51}} + \frac{1}{{99}} + \frac{1}{{52}} + .... + \frac{1}{{52}} + \frac{1}{{99}} + \frac{1}{{51}} + \frac{1}{{100}}\\ = \left( {\frac{1}{{100}} + \frac{1}{{99}} + .... + \frac{1}{{52}} + \frac{1}{{51}}} \right) + \left( {\frac{1}{{51}} + \frac{1}{{52}} + .... + \frac{1}{{99}} + \frac{1}{{100}}} \right)\\ = 2\left( {\frac{1}{{51}} + \frac{1}{{52}} + .... + \frac{1}{{99}} + \frac{1}{{100}}} \right)\\ = 2A\\ \Rightarrow \frac{A}{B} = \frac{{151}}{2}\end{array}\]

Vậy \[\frac{A}{B} = \frac{{151}}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi tích của 3 số liên tiếp là:

A= a ∙ (a + 1) ∙ (a + 2) (a thuộc ℕ*)

Giả sử a A 3

Nếu a ko chia hết cho 3 thì có 2 khả năng: 3n + 1 hoặc 3n + 2

Với a = 3n + 1

a + 2 = (3n + 1) + 2 = 3n + 3

A 3 (1)

Với a = 3n + 2 

a +1 = 3n + 2 + 1 = 3n + 3  3

A chia hết 3 (2)

Vậy với mọi A thuộc N thì A  3 (điều đã được chứng minh).

Lời giải

Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm B (ảnh 1)

a)

Vì Oz là phân giác của xOy nên \[xOz = yOz = \frac{{xOy}}{2}\]

Xét Δ AOI và Δ BOI có:

OA = OB (gt)

AOI = BOI (cmt)

OI là cạnh chung

Do đó, Δ AOI = Δ BOI (c.g.c) (đpcm)

b)

Xét Δ AOH và Δ BOH có:

OA = OB (gt)

AOH = BOH (câu a)

HO là cạnh chung.

Do đó, Δ AOH = Δ BOH (c.g.c)

AHO = BHO (2 góc tương ứng)

Mà AHO + BHO = 180° (kề bù) nên AHO = BHO = 90°

 AB OI (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP