Câu hỏi:
06/06/2023 540
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN = 2ND. Tính thể tích V của khối tứ diện ACMN.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN = 2ND. Tính thể tích V của khối tứ diện ACMN.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Ta có : VS.ABCD =\(\frac{1}{3}\)SABCD . SA=\(\frac{1}{3}\)∙ a2 ∙ a = \(\frac{{{a^3}}}{3}\)
\[\frac{{{V_{SAMN}}}}{{{V_{SABD}}}} = \frac{{SN}}{{SD}}\cdot\frac{{SM}}{{SB}} = .\frac{{23}}{{12}} = \frac{1}{3}\]
Mà \({V_{SABD}} = \frac{1}{2}{V_{SABCD}} = \frac{1}{2}\cdot\frac{{{a^3}}}{3} = \frac{{{a^3}}}{6}\)
\( \Rightarrow {V_{SAMN}} = \frac{{{a^3}}}{{18}}\)
Ta lại có :
\[\begin{array}{l}{V_{NADC}} = \frac{1}{3}\cdot{S_{ADC}}\cdotd(N;(ADC)) = \frac{1}{3}\cdot{S_{ADC}}\cdot\frac{1}{3}d(S;(ADC)) = \frac{1}{3}{V_{SABD}} = \frac{1}{6}{V_{SABCD}} = \frac{{{a^3}}}{{18}}\\{V_{MABC}} = \frac{1}{3}\cdot{S_{ABC}}\cdotd(M;(ABC)) = \frac{1}{3}\cdot{S_{ABC}}\cdot\frac{1}{2}d(S;(ABC)) = \frac{1}{2}{V_{SABC}} = \frac{1}{4}{V_{SABCD}} = \frac{{{a^3}}}{{12}}\end{array}\]
Mặt khác:
\[\begin{array}{l}{V_{C.SMN}} = \frac{1}{3}d(C,(SMN)).{S_{\Delta SMN}} = \frac{1}{3}d(A,(SMN)).{S_{\Delta SMN}} = \frac{{{a^3}}}{{18}}\\\end{array}\]
Vậy:
\({V_{ACMN}} = {V_{S.ABCD}} - {V_{NSAM}} - {V_{NADC}} - {V_{MABC}} - {V_{SCMN}} = \frac{{{a^3}}}{3} - \frac{{{a^3}}}{{18}} - \frac{{{a^3}}}{{18}} - \frac{{{a^3}}}{{12}} - \frac{{{a^3}}}{{18}} = \frac{{{a^3}}}{{12}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi tích của 3 số liên tiếp là:
A= a ∙ (a + 1) ∙ (a + 2) (a thuộc ℕ*)
Giả sử a ⋮ 3 ⇒ A ⋮ 3
Nếu a ko chia hết cho 3 thì có 2 khả năng: 3n + 1 hoặc 3n + 2
Với a = 3n + 1
⇒ a + 2 = (3n + 1) + 2 = 3n + 3 ⋮ 3
⇒ A ⋮ 3 (1)
Với a = 3n + 2
⇒ a +1 = 3n + 2 + 1 = 3n + 3 ⋮ 3
⇒ A chia hết 3 (2)
Vậy với mọi A thuộc N thì A ⋮ 3 (điều đã được chứng minh).
Lời giải

a)
Vì Oz là phân giác của xOy nên \[xOz = yOz = \frac{{xOy}}{2}\]
Xét Δ AOI và Δ BOI có:
OA = OB (gt)
AOI = BOI (cmt)
OI là cạnh chung
Do đó, Δ AOI = Δ BOI (c.g.c) (đpcm)
b)
Xét Δ AOH và Δ BOH có:
OA = OB (gt)
AOH = BOH (câu a)
HO là cạnh chung.
Do đó, Δ AOH = Δ BOH (c.g.c)
⇒ AHO = BHO (2 góc tương ứng)
Mà AHO + BHO = 180° (kề bù) nên AHO = BHO = 90°
⇒ AB ⊥ OI (đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.