Cho hàm số y = f(x) có đạo hàm trên ℝ. Đồ thị hàm số y = f′(x) như hình vẽ bên. Hàm số g(x) = f(x) − \(\frac{{{x^3}}}{3}\) + x2 – x + 2 đạt cực đại tại?
Cho hàm số y = f(x) có đạo hàm trên ℝ. Đồ thị hàm số y = f′(x) như hình vẽ bên. Hàm số g(x) = f(x) − \(\frac{{{x^3}}}{3}\) + x2 – x + 2 đạt cực đại tại?

Quảng cáo
Trả lời:

Ta có g′(x) = f′(x) – x2 + 2x − 1; g′(x) = 0 ⇒ f′(x) = (x−1)2.
Suy ra số nghiệm của phương trình g′(x) = 0 chính là số giao điểm giữa đồ thị của hàm số f′(x) và parapol (P): y = (x−1)2.
Dựa vào đồ thị ta suy ra g′(x) = 0 \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 2\end{array} \right.\)
Vậy g(x) đạt cực đại tại x = 1.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi tích của 3 số liên tiếp là:
A= a ∙ (a + 1) ∙ (a + 2) (a thuộc ℕ*)
Giả sử a ⋮ 3 ⇒ A ⋮ 3
Nếu a ko chia hết cho 3 thì có 2 khả năng: 3n + 1 hoặc 3n + 2
Với a = 3n + 1
⇒ a + 2 = (3n + 1) + 2 = 3n + 3 ⋮ 3
⇒ A ⋮ 3 (1)
Với a = 3n + 2
⇒ a +1 = 3n + 2 + 1 = 3n + 3 ⋮ 3
⇒ A chia hết 3 (2)
Vậy với mọi A thuộc N thì A ⋮ 3 (điều đã được chứng minh).
Lời giải
Ta có \[A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + .... + \frac{1}{{99.100}}\]
\[\begin{array}{l}A = \left( {\frac{1}{{1.2}} + \frac{1}{{3.4}}} \right) + \left( {\frac{1}{{5.6}} + ... + \frac{1}{{99.100}}} \right)\\A = \frac{7}{{12}} + \left( {\frac{1}{{5.6}} + ... + \frac{1}{{99.100}}} \right) > \frac{7}{{12}}\end{array}\]
(vì \[\frac{1}{{5.6}} + ... + \frac{1}{{99.100}} > 0\])
Ta có:
\[\begin{array}{l}A = \frac{1}{{1.2}} + \frac{1}{{3.4}} + \frac{1}{{5.6}} + ... + \frac{1}{{99.100}}\\ \Rightarrow A = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + ... + \frac{1}{{99}} - \frac{1}{{100}}\end{array}\]
\[ \Rightarrow A = \left( {\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + ... + \frac{1}{{99}}} \right) - \left( {\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{{100}}} \right)\]
\[ \Rightarrow A = \left( {\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + ... + \frac{1}{{99}} + \frac{1}{{100}}} \right) - 2\left( {\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{{100}}} \right)\]
\[\begin{array}{l} \Rightarrow A = \left( {\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + ... + \frac{1}{{99}} + \frac{1}{{100}}} \right) - \left( {1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{50}}} \right)\\ \Rightarrow A = \frac{1}{{51}} + \frac{1}{{52}} + \frac{1}{{53}} + ... + \frac{1}{{100}}\end{array}\]
Tổng A có (100 – 51) : 1 + 1 = 50 (số hạng)
Như vậy, ta nhóm 10 số vào 1 nhóm được:
\[\begin{array}{l}A = \left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right) + \left( {\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}}} \right)\\ + \left( {\frac{1}{{71}} + \frac{1}{{72}} + ... + \frac{1}{{80}}} \right) + \left( {\frac{1}{{81}} + \frac{1}{{82}} + ... + \frac{1}{{90}}} \right)\\ + \left( {\frac{1}{{91}} + \frac{1}{{92}} + ... + \frac{1}{{100}}} \right)\end{array}\]
Ta thấy:
\[\begin{array}{l}\left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right) < 10\cdot \frac{1}{{50}} = \frac{1}{5}\\\left( {\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}}} \right) < 10\cdot \frac{1}{{60}} = \frac{1}{6}\\\left( {\frac{1}{{71}} + \frac{1}{{72}} + ... + \frac{1}{{80}}} \right) < 10\cdot \frac{1}{{80}} = \frac{1}{7}\\\left( {\frac{1}{{81}} + \frac{1}{{82}} + ... + \frac{1}{{90}}} \right) < 10\cdot \frac{1}{{90}} = \frac{1}{8}\end{array}\]
\[\begin{array}{l}\left( {\frac{1}{{91}} + \frac{1}{{92}} + ... + \frac{1}{{100}}} \right) < \frac{1}{9}\\ \Rightarrow \left( {\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}}} \right) + \left( {\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}}} \right) + \left( {\frac{1}{{71}} + \frac{1}{{72}} + ... + \frac{1}{{80}}} \right)\\ + \left( {\frac{1}{{81}} + \frac{1}{{82}} + ... + \frac{1}{{90}}} \right) + \left( {\frac{1}{{91}} + \frac{1}{{92}} + ... + \frac{1}{{100}}} \right) < \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} < \frac{5}{6}\\ \Rightarrow A < \frac{5}{6}\end{array}\]
Vậy \(\frac{7}{{12}} < A < \frac{5}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.