Câu hỏi:

07/06/2023 942

Cho hình bình hành ABCD, kẻ AH, CK vuông góc với BD. Chứng minh rằng AHCK là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD, kẻ AH, CK vuông góc với BD. Chứng minh rằng AHCK là  (ảnh 1)

Do ABCD là hình bình hành nên AD // BC và AD = BC.

Do AD // BC nên \(\widehat {ADB} = \widehat {CBD}\) (so le trong)

Xét ∆ADH và ∆CBK có:

\(\widehat {AHD} = \widehat {CKB}\)= 90°

AD = BC (chứng minh trên);

\(\widehat {ADH} = \widehat {CBK}\)(do \(\widehat {ADB} = \widehat {CBD}\))

Do đó ∆ADH = ∆CBK (cạnh huyền – góc nhọn).

Suy ra AH = CK (hai cạnh tương ứng).

Ta có AH  DB và CK  DB nên AH // CK.

Tứ giác AHCK có AH // CK và AH = CK nên AHCK là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nếu Hòa cho Bình 10 viên bi thì số bi của hai bạn bằng nhau nên ban đầu Hoà hơn Bình số bi là:

2 . 10 = 20 (viên)

Số bi của Hoà ban đầu là:

(120 + 20) : 2 = 70 (viên)

Số bi của Bình ban đầu là:

70 – 20 = 50 (viên)

Đáp số: Hoà: 70 viên; Bình: 50 viên.

Lời giải

Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AD và BC. Đường chéo (ảnh 1)

a) Ta có: ED = \(\frac{1}{2}AD\)

BF = \(\frac{1}{2}BC\)

Mà ABCD là hình bình hành nên AD = BC và AD// BC

Suy ra: ED = BF và ED // BF

Vậy EDFB là hình bình hành.

b) Vì EB // DF nên EP // DQ

Xét tam giác ADQ có:

EP // DQ và E là trung điểm AD nên PE là đường trung bình của tam giác ADQ.

Suy ra: P là trung điểm AQ hay AP = PQ (1)

Xét tam giác BPC có:

FQ // BP và F là trung điểm BC nên FQ là đường trung bình của tam giác BPC.

Suy ra: Q là trung điểm của PC hay PQ = QC (2)

Từ (1) và (2) suy ra: AP = PQ = QC.

c) Do AE // BC nên áp dụng định lí Thalès ta có:

\(\frac{{AP}}{{PC}} = \frac{{EP}}{{PB}} = \frac{1}{2}\)

Mặt khác R là trung điểm PB nên PR = RB = \(\frac{1}{2}PB\)

Suy ra: EP = PR = RB = \(\frac{1}{2}PB\)

Xét tứ giác ARQE có:

AP = PQ và PE = PR (2 đường chéo AQ, RE cắt nhau tại trung điểm mỗi đường)

Vậy tứ giác ARQE là hình bình hành.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP