Câu hỏi:
08/06/2023 9,852
Cho xyz = 1 và x + y + z = \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\). Chứng minh rằng trong 3 số x, y, z có ít nhất 1 số bằng 1.
Cho xyz = 1 và x + y + z = \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\). Chứng minh rằng trong 3 số x, y, z có ít nhất 1 số bằng 1.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
x + y + z = \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{{xy + yz + zx}}{{xyz}} = xy + yz + zx\).
⇔ x + y + z – xy – yz – zx = 0
⇔ xyz – xy – zx – yz + x + y + z – 1 = 0 (vì xyz = 1)
⇔ xy (z – 1) – (z – 1)x – y(z – 1) + (z – 1) = 0
⇔(z – 1)(xy – x – y + 1) = 0
⇔(z – 1)(x – 1)(y – 1) = 0
⇔ \(\left[ \begin{array}{l}x - 1 = 0\\y - 1 = 0\\z - 1 = 0\end{array} \right.\,\,\,hay\,\,\left[ \begin{array}{l}x = 1\\y = 1\\z = 1\end{array} \right.\)
Vậy 1 trong 3 số x, y, z có ít nhất 1 số bằng 1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số có 3 chữ số khác nhau là: \(\overline {abc} \)
Để được số chia hết cho 5 thì c = 0 hoặc c = 5
Với c = 0 thì b có 9 cách chọn
a có 8 cách chọn
Vậy có: 8.9.1 = 72 (số)
+ Với c = 5, c có 1 cách chọn
Chữ số a có 8 cách chọn (vì a khác 0)
b có 8 cách chọn
Vậy có: 8.8.1 = 64 (số)
Vậy lập được: 72 + 64 = 136 (số).
Lời giải
Gọi chiều rộng hình chữ nhật là a;
Chiều dài hình chữ nhật là b (a,b>0)
Theo bài ta có phương trình:
\(\left\{ {\begin{array}{*{20}{l}}{\left( {a + b} \right){\rm{ }}.{\rm{ }}2{\rm{ }} = {\rm{ }}80}\\{\left( {a + 3} \right)\left( {b + 5} \right){\rm{ }} = {\rm{ }}ab{\rm{ }} + {\rm{ }}195}\end{array}} \right.\)
⇔ \(\left\{ {\begin{array}{*{20}{l}}{a + b = {\rm{40}}}\\{5a + 3b + 15\,\,{\rm{ = }}\,\,195}\end{array}} \right.\)
⇔ \[\left\{ {\begin{array}{*{20}{l}}{a + b = {\rm{40}}}\\{5\left( {a + b} \right) - 2b\,\,{\rm{ = }}\,\,180}\end{array}} \right.\]
⇔ \[\left\{ {\begin{array}{*{20}{l}}{a + b = {\rm{40}}}\\{2b = 20}\end{array}} \right.\]
⇔ \[\left\{ {\begin{array}{*{20}{l}}{a = 3{\rm{0}}}\\{b = 10}\end{array}} \right.\]
Vậy chiều dài là 30m và chiều rộng là chiều rộng là 10m.
Kích thước mảnh đất là:
30 . 10 = 300 (m2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.