Câu hỏi:
13/07/2024 2,460Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HM vuông góc với AB, HN vuông góc với AC. Chứng minh rằng tam giác AMN đồng dạng với tam giác ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
∆ABH vuông tại H có HM là đường cao: AH2 = AM.AB (hệ thức lượng trong tam giác vuông) (1)
∆ACH vuông tại H có HN là đường cao: AH2 = AN.AC (hệ thức lượng trong tam giác vuông) (2)
Từ (1), (2), suy ra AM.AB = AN.AC.
Xét ∆AMN và ∆ABC, có:
;
(do AM.AB = AN.AC).
Vậy (c.g.c).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Đường gấp khúc ABCD có AB bằng 15 cm, biết đường gấp khúc ABC dài hơn đường gấp khúc BCD là 3 cm. Tính độ dài đoạn thẳng DC.
Câu 3:
Bác Tư trồng lúa mì trên hai mảnh đất, cuối năm thu được 5795 kg. Mảnh đất thứ hai thu kém mảnh đất thứ nhất 1125 kg. Hỏi mảnh đất thứ hai thu được bao nhiêu yến lúa mì?
Câu 4:
c) Qua C kẻ đường thẳng song song với AD cắt AM tại I, cắt AB tại K. Chứng minh C là trung điểm của IK.
Câu 5:
Câu 6:
Cho đường tròn (O) và dây AB không đi qua tâm, gọi M là trung điểm AB. Qua M vẽ dây CD không trùng AB. Chứng minh rằng M không là trung điểm của CD.
Câu 7:
Tính giá trị biểu thức bằng cách hợp lí:
a) A = x5 – 100x4 + 100x3 – 100x2 + 100x – 9 tại x = 99.
về câu hỏi!