Câu hỏi:
13/07/2024 1,793Cho đa giác đều gồm 2023 cạnh. Người ta sơn các đỉnh của đa giác bằng hai màu xanh và đỏ. Chứng minh ràng tồn tại ba đỉnh được sơn cùng một màu tạo thành một đa giác cân.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có đa giác 2023 cạnh nên có 2023 đỉnh.
Do đó phải tồn tại 2 đỉnh kề nhau là P và Q đc sơn bởi cùng 1 màu – màu đỏ (Theo nguyên tắc dirichlet)
Vì đa giác đã cho là đa giác đều có số đỉnh lẻ nên phải tồn tại 1 đỉnh nào đó nằm trên đường trung trực của đoạn thẳng PQ. Giả sử đỉnh đó là A.
– Nếu A tô màu đỏ thì ta có tam giác APQ là tam giác cân có 3 đỉnh A, P, Q đc tô cùng màu đỏ.
– Nếu A tô màu xanh. Lúc đó gọi B và C là các đỉnh khác nhau của đa giác kề vs P và Q.
• Nếu cả 2 đỉnh B và C đc tô màu xanh thì tam giác ABC cân và có 3 đỉnh cùng tô màu xanh.
• Nếu ngược lại, 1 trong 2 đỉnh B và C đc tô màu đỏ thì tam giác BPQ hoặc tam giác CPQ là tam giác cân có 3 đỉnh đc tô màu đỏ.
Vậy ta có điều phải chứng minh.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Đường gấp khúc ABCD có AB bằng 15 cm, biết đường gấp khúc ABC dài hơn đường gấp khúc BCD là 3 cm. Tính độ dài đoạn thẳng DC.
Câu 3:
Bác Tư trồng lúa mì trên hai mảnh đất, cuối năm thu được 5795 kg. Mảnh đất thứ hai thu kém mảnh đất thứ nhất 1125 kg. Hỏi mảnh đất thứ hai thu được bao nhiêu yến lúa mì?
Câu 4:
c) Qua C kẻ đường thẳng song song với AD cắt AM tại I, cắt AB tại K. Chứng minh C là trung điểm của IK.
Câu 5:
Câu 6:
Cho đường tròn (O) và dây AB không đi qua tâm, gọi M là trung điểm AB. Qua M vẽ dây CD không trùng AB. Chứng minh rằng M không là trung điểm của CD.
Câu 7:
Tính giá trị biểu thức bằng cách hợp lí:
a) A = x5 – 100x4 + 100x3 – 100x2 + 100x – 9 tại x = 99.
về câu hỏi!