Câu hỏi:

13/07/2024 4,291

Cho đa giác đều gồm 2023 cạnh. Người ta sơn các đỉnh của đa giác bằng hai màu xanh và đỏ. Chứng minh ràng tồn tại ba đỉnh được sơn cùng một màu tạo thành một đa giác cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có đa giác 2023 cạnh nên có 2023 đỉnh.

Do đó phải tồn tại 2 đỉnh kề nhau là P và Q đc sơn bởi cùng 1 màu – màu đỏ (Theo nguyên tắc dirichlet) 

Vì đa giác đã cho là đa giác đều có số đỉnh lẻ nên phải tồn tại 1 đỉnh nào đó nằm trên đường trung trực của đoạn thẳng PQ. Giả sử đỉnh đó là A.

– Nếu A tô màu đỏ thì ta có tam giác APQ là tam giác cân có 3 đỉnh A, P, Q đc tô cùng màu đỏ.

– Nếu A tô màu xanh. Lúc đó gọi B và C là các đỉnh khác nhau của đa giác kề vs P và Q.

• Nếu cả 2 đỉnh B và C đc tô màu xanh thì tam giác ABC cân và có 3 đỉnh cùng tô màu xanh.

• Nếu ngược lại, 1 trong 2 đỉnh B và C đc tô màu đỏ thì tam giác BPQ hoặc tam giác CPQ là tam giác cân có 3 đỉnh đc tô màu đỏ.

Vậy ta có điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cos4x = 2cos22x – 1

= 2(2cos2x – 1)2 – 1

= 2(4cos4x – 4cos2x + 1) – 1

= 8cos4x – 8cos2x + 2 – 1

= 8cos4x – 8cos2x + 1.

Vậy cos4x = 8cos4x – 8cos2x + 1.

Lời giải

Ta thấy đường gấp khúc ABC và đường gấp khúc BCD có chung đoạn BC.

Mà đường gấp khúc ABC dài hơn đường gấp khúc BCD là 3cm.

Nên đoạn thẳng AB dài hơn đoạn thẳng CD là 3 cm.

Độ dài đoạn thẳng CD là: 15 – 3 = 12 (cm).

Đáp số: 12 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP