Cho (O; R) và 3 dây AB, AC, AD; gọi M và N là lần lượt là hình chiếu của B trên các đường thẳng AC, AD. Chứng minh MN ≤ 2R
Cho (O; R) và 3 dây AB, AC, AD; gọi M và N là lần lượt là hình chiếu của B trên các đường thẳng AC, AD. Chứng minh MN ≤ 2R
Quảng cáo
Trả lời:
\[\widehat {BMC} = \widehat {BND} = 90^\circ ,\widehat {BCM} = \widehat {BDN}\]
∆BMC ᔕ ∆BND (g.g)
\[\frac{{BM}}{{BC}} = \frac{{BN}}{{BD}}\] và \(\widehat {MBN} = \widehat {CDB}\)
∆BMC ᔕ ∆BND (g.c.g)
\[\frac{{MN}}{{CD}} = \frac{{BN}}{{BD}} \le \frac{{BD}}{{BD}} = 1\]
MN ≤ CD
Ta thấy CD là một dây của đường tròn (O; R) nên CD ≤ 2R
Do đó MN ≤ 2R. Dấu “=” xảy ra khi và chỉ khi N trùng D và CD là đường kính của (O).
Tứ giác ABCD là hình chữ nhật. Từ đó suy ra vị trí của 3 dây AB, AC, AD.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số học sinh học giỏi ít nhất 1 môn toán hoặc tiếng việt là:
40 – 2 = 38 (học sinh)
Nếu mỗi bạn chỉ thích 1 môn thì có tất cả số học sinh là:
30 + 25 = 55 (học sinh)
Vậy thì thừa ra số học sinh chính là số học sinh giỏi cả toán và tiếng việt là:
55 – 38 = 17 (học sinh)
Đáp số: 17 học sinh
Lời giải
Số tự nhiên a nhỏ nhất khác 0 và a ⋮ 28 và a ⋮ 32
Do đó a là BCNN(28, 32)
Phân tích các số ra thừa số nguyên tố:
28 = 22 × 7
32 = 25
Ta thấy thừa số nguyên tố chung là 2; thừa số nguyên tố riêng là 7
Số mũ lớn nhất của 2 là 5, số mũ lớn nhất của 7 là 1
Nên a = BCNN(28, 32) = 25 × 7 = 224
Vậy số tự nhiên a cần tìm là 224.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.