Câu hỏi:

19/08/2025 613 Lưu

Cho hình thang vuông ABCD tại A và D. Gọi E, F lần lượt là trung điểm của AD, BC. Chứng minh:

a) ∆AFD cân tại F.

b) \(\widehat {BAF} = \widehat {CDF}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình thang vuông ABCD tại A và D. Gọi E, F lần lượt là trung điểm của AD (ảnh 1)

a) Ta có EF là đường trung bình của hình thang ABCD

EF // AB

Suy ra EF AD.

Khi đó EF vừa là trung tuyến vừa là đường cao của tam giác AFD (đpcm)

Vậy tam giác AFD cân tại F.

b) Tam giác AFD cân tại F nên \(\widehat {EAF} = \widehat {EDF}\).

Suy ra \(\widehat {FAB} = \widehat {CDF}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số học sinh học giỏi ít nhất 1 môn toán hoặc tiếng việt là:

40 – 2 = 38 (học sinh)

Nếu mỗi bạn chỉ thích 1 môn thì có tất cả số học sinh là:

30 + 25 = 55 (học sinh)

Vậy thì thừa ra số học sinh chính là số học sinh giỏi cả toán và tiếng việt là:

55 – 38 = 17 (học sinh)

Đáp số: 17 học sinh

Lời giải

Số tự nhiên a nhỏ nhất khác 0 và a 28 và a 32

Do đó a là BCNN(28, 32)

Phân tích các số ra thừa số nguyên tố:

28 = 22 × 7

32 = 25

Ta thấy thừa số nguyên tố chung là 2; thừa số nguyên tố riêng là 7

Số mũ lớn nhất của 2 là 5, số mũ lớn nhất của 7 là 1

Nên a = BCNN(28, 32) = 25 × 7 = 224

Vậy số tự nhiên a cần tìm là 224.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP