Câu hỏi:
13/07/2024 7,847
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0.
a) Chứng minh phương trình trên luôn có 2 nghiệm phân biệt x1; x2 với mọi m.
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0.
a) Chứng minh phương trình trên luôn có 2 nghiệm phân biệt x1; x2 với mọi m.
Quảng cáo
Trả lời:
a) Ta có:
∆’ = (m – 1)2 – (2m – 5)
= m2 – 2m + 1 – 2m + 5
= m2 – 4m + 6
= m2 – 2m.2 + 4 + 2
= (m – 2)2 + 2 > 0 x ∈ ℝ.
Suy ra phương trình đã cho luôn có hai nghiệm phân biệt x1; x2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
y = sinx + cosx
Ta có: −1 ≤ sinx ≤ 1
Vậy ; .
Lời giải
Do đồ thị hàm số (P) đi qua A nên ta có c = 1.
(P) có đỉnh nằm trên trục hoành nên:
⇔ b2 – 4ac = 0
⇔ b2 = 4ac = 4a
(1)
Do đồ thị hàm số (P) đi qau B(2; 1) nên:
4a + 2b + c = 1
⇔ 4a + 2b = 0
Thay (1) vào ta có:
b2 + 2b = 0
Với b = 0 suy ra a = 0 (loại)
Với b = −2 suy ra a = 1 (thỏa mãn)
Vậy phương trình cần tìm là: y = x2 – 2x + 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.