Câu hỏi:
13/07/2024 15,448
Xác định Parabol y = ax2 + bx + c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A(0; 1) và B(2; 1).
Xác định Parabol y = ax2 + bx + c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A(0; 1) và B(2; 1).
Quảng cáo
Trả lời:
Do đồ thị hàm số (P) đi qua A nên ta có c = 1.
(P) có đỉnh nằm trên trục hoành nên:
⇔ b2 – 4ac = 0
⇔ b2 = 4ac = 4a
(1)
Do đồ thị hàm số (P) đi qau B(2; 1) nên:
4a + 2b + c = 1
⇔ 4a + 2b = 0
Thay (1) vào ta có:
b2 + 2b = 0
Với b = 0 suy ra a = 0 (loại)
Với b = −2 suy ra a = 1 (thỏa mãn)
Vậy phương trình cần tìm là: y = x2 – 2x + 1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
y = sinx + cosx
Ta có: −1 ≤ sinx ≤ 1
Vậy ; .
Lời giải
Phương trình đã chó có nghiệm khi ∆ ≥ 0
⇔ m2 – 4(m + 3) ≥ 0
⇔ m2 – 4m – 12 ≥ 0
Vậy với m ∈ (- ; −2] ∪ [6; + ) thì thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.