Câu hỏi:
28/06/2023 768
Cho tam giác ABC vuông tại A có AB = AC. Gọi K là trung điểm BC. Chứng minh ∆AKB = ∆AKC và AK ⊥ BC
Quảng cáo
Trả lời:

Xét ∆AKB và ∆AKC có:
AK cạnh chung
BK = KC (gt)
AB = AC (gt)
⇒ ∆AKB = ∆AKC (c.c.c)
⇒
Vì (hai góc kề bù) (1)
Mà (2)
Từ (1) và (2) suy ra
Vậy AK ⊥ BC (đpcm)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
y = sinx + cosx
Ta có: −1 ≤ sinx ≤ 1
Vậy ; .
Lời giải
Do đồ thị hàm số (P) đi qua A nên ta có c = 1.
(P) có đỉnh nằm trên trục hoành nên:
⇔ b2 – 4ac = 0
⇔ b2 = 4ac = 4a
(1)
Do đồ thị hàm số (P) đi qau B(2; 1) nên:
4a + 2b + c = 1
⇔ 4a + 2b = 0
Thay (1) vào ta có:
b2 + 2b = 0
Với b = 0 suy ra a = 0 (loại)
Với b = −2 suy ra a = 1 (thỏa mãn)
Vậy phương trình cần tìm là: y = x2 – 2x + 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.