Câu hỏi:

30/06/2023 4,805

Tìm a, b, c để đồ thị hàm số y = ax2 + bx + c là đường parabol có đỉnh I(3; 4), cắt trục hoành tại điểm có hoành độ bằng –1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trục hoành: y = 0.

Suy ra giao điểm của parabol cần tìm và trục hoành là điểm A(–1; 0).

Ta có parabol đi qua điểm A(–1; 0).

Suy ra 0 = a – b + c    (1)

Ta có parabol có đỉnh I(3; 4).

Suy ra \( - \frac{b}{{2a}} = 3\).

Do đó 6a + b = 0     (2)

Ta có parabol đi qua điểm I(3; 4).

Suy ra 4 = 9a + 3b + c    (3)

Từ (1), (2), (3), ta có hệ phương trình: \(\left\{ \begin{array}{l}a - b + c = 0\\6a + b = 0\\9a + 3b + c = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{4}\\b = \frac{3}{2}\\c = \frac{7}{4}\end{array} \right.\).

Vậy \(a = - \frac{1}{4};\,\,b = \frac{3}{2};\,\,c = \frac{7}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có góc A = 120 độ. Tia phân giác của góc D qua (ảnh 1)

a) Hình bình hành ABCD có \(\widehat {BAD},\,\widehat {ADC}\) ở vị trí trong cùng phía.

Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BAD} = 60^\circ \).

Khi đó \(\widehat {ADI} = \widehat {IDC} = \frac{{\widehat {ADC}}}{2} = 30^\circ \) (do DI là tia phân giác của \(\widehat {ADC}\)).

\(\widehat {AID} = \widehat {IDC}\) (cặp góc so le trong).

Vì vậy \(\widehat {AID} = \widehat {ADI}\).

Suy ra tam giác ADI cân tại A.

Do đó AD = AI.

Mà AB = 2AI (I là trung điểm của AB).

Vậy AB = 2AD (điều phải chứng minh).

b) Gọi J là trung điểm của DI.

Tam giác ADI có AJ là đường trung tuyến.

Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.

Khi đó \(\widehat {JAI} = \widehat {DAJ} = \frac{{\widehat {DAI}}}{2} = 60^\circ \).

Xét ∆AJD và ∆DHA, có:

\(\widehat {AJD} = \widehat {DHA} = 90^\circ \);

AD là cạnh chung;

\(\widehat {DAJ} = \widehat {ADH} = 60^\circ \).

Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).

Suy ra DJ = AH (cặp cạnh tương ứng).

Mà DI = 2DJ (J là trung điểm của DI).

Vậy DI = 2AH (điều phải chứng minh).

c) Ta có BI = BC \(\left( { = \frac{1}{2}AB} \right)\).

Suy ra tam giác IBC cân tại B.

\(\widehat {IBC} = \widehat {ADC} = 60^\circ \).

Do đó tam giác IBC đều.

Vì vậy IC = IB = IA.

Khi đó tam giác ABC vuông tại C hay \(\widehat {ACB} = 90^\circ \).

Suy ra \(\widehat {DAC} = \widehat {ACB} = 90^\circ \).

Vậy AD AC (điều phải chứng minh).

Lời giải

Ta có \({\sin ^2}a = 1 - {\cos ^2}a = 1 - {\left( {\frac{4}{5}} \right)^2} = \frac{9}{{25}}\).

\( \Rightarrow \sin a = \pm \frac{3}{5}\).

Vì 0° < a < 90° nên sina > 0.

Do đó \(\sin a = \frac{3}{5}\).

Ta có \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{3}{5}:\frac{4}{5} = \frac{3}{4}\).

Ta có \(\cot a = \frac{1}{{\tan a}} = \frac{4}{3}\).

Vậy \(\sin a = \frac{3}{5}\); \(\tan a = \frac{3}{4}\)\(\cot a = \frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay