Câu hỏi:
30/06/2023 3,158Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.
a) Chứng minh rằng ABDC là hình thang vuông.
b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.
c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.
d) AM = R. Tính diện tích tứ giác ACDB theo R.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có AC là tiếp tuyến của (O). Suy ra AC ⊥ AB (1)
Chứng minh tương tự, ta được BD ⊥ AB (2)
Từ (1), (2), suy ra AC // BD và \[\widehat {BAC} = 90^\circ \].
Vậy ABDC là hình thang vuông.
b) Ta có MD, MB là hai tiếp tuyến của (O).
Suy ra MD = MB.
Do đó D thuộc đường trung trực của đoạn MB (3)
Lại có OB = OM = R.
Suy ra O thuộc đường trung trực của đoạn MB (4)
Từ (3), (4), suy ra OD là đường trung trực của đoạn MB.
Vậy OD ⊥ MB tại N.
Ta có \(\widehat {AEB} = 90^\circ \) và \(\widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O)).
Tam giác ABD vuông tại B có BE là đường cao: BD2 = DE.DA (5)
Tam giác BDO vuông tại B có BN là đường cao: BD2 = DN.DO (6)
Từ (5), (6), ta thu được DE.DA = DN.DO.
c) Xét ∆AOF và ∆OBD, có:
\(\widehat {AOF} = \widehat {OBD} = 90^\circ \);
AO = OB (= R);
\(\widehat {{A_1}} = \widehat {{O_1}}\) (cùng phụ với \(\widehat {ABM}\)).
Do đó ∆AOF = ∆OBD (cạnh huyền – góc nhọn).
Suy ra OF = BD (cặp cạnh tương ứng).
Mà OF // BD (cùng vuông góc với AB).
Do đó OFDB là hình bình hành.
Mà \[\widehat {OBD} = 90^\circ \].
Vậy OFDB là hình chữ nhật.
d) Ta có AM = OM = OA = R.
Suy ra tam giác OAM đều.
Do đó \(\widehat {DBM} = \widehat {{A_1}} = 60^\circ \) (cùng phụ với \(\widehat {ABM}\)) và DM = DB (tính chất hai tiếp tuyến cắt nhau).
Suy ra tam giác MBD đều.
Khi đó DB = MB.
Tam giác ABM vuông tại M: \[MB = \sqrt {A{B^2} - A{M^2}} = \sqrt {4{R^2} - {R^2}} = R\sqrt 3 \].
Ta có CA = CM và CO là tia phân giác của \(\widehat {ACM}\) (tính chất hai tiếp tuyến cắt nhau).
Suy ra tam giác ACM cân tại C có CO là vừa là đường phân giác, vừa là đường cao.
Gọi K là giao điểm của CO và AM. Suy ra K là trung điểm của AM và CK ⊥ AK.
Ta có \(\widehat {CAK} = 90^\circ - \widehat {KAO} = 90^\circ - 60^\circ = 30^\circ \).
Tam giác AKC vuông tại K: \[AC = \frac{{AK}}{{\cos \widehat {CAK}}} = \frac{{AM}}{{2.\cos \widehat {CAK}}} = \frac{R}{{2.\cos 30^\circ }} = \frac{R}{{\sqrt 3 }}\].
Khi đó \[{S_{ABDC}} = \frac{{\left( {AC + BD} \right).AB}}{2} = \frac{{\left( {AC + MB} \right).AB}}{2}\].
\[ = \frac{{\left( {\frac{R}{{\sqrt 3 }} + R\sqrt 3 } \right).2R}}{2} = \frac{{4{R^2}}}{{\sqrt 3 }}\].
Vậy diện tích tứ giác ABDC bằng \[\frac{{4{R^2}}}{{\sqrt 3 }}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:
a) AB = 2AD.
b) DI = 2AH.
c) AC vuông góc với AD.
Câu 2:
Cho \(\cos a = \frac{4}{5}\) và 0° < a < 90°. Tính sina, tana, cota.
Câu 3:
Cho hình chữ nhật ABCD có AB = 4 cm, BC = 3 cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD ở E.
1) Tính AC, BH, \(\widehat {BAC}\).
2) Chứng minh BH.BE = CD2.
3) Kẻ EF vuông góc với BC tại F. Chứng minh .
4) Tính diện tích tam giác BHF.
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \) và \(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.
Câu 5:
Cho đường thẳng d: y = –4x + 3.
a) Vẽ đồ thị hàm số.
b) Tìm tọa độ giao điểm A, B của d với lần lượt hai trục tọa độ Ox và Oy.
c) Tính khoảng cách từ gốc tọa độ đến d.
d) Tính diện tích tam giác OAB.
Câu 6:
Với các số 0, 1, 3, 6, 9, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và không chia hết cho 3.
về câu hỏi!